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Abstract
Our purpose is to evaluate the efficiency of MPEG-7 basis pro-
jection (BP) features vs. Mel-scale Frequency Cepstrum Coef-
ficients (MFCC) for speaker recognition in noisy environments.
The MPEG-7 feature extraction mainly consists of a Normal-
ized Audio Spectrum Envelope (NASE), a basis decomposition
algorithm and a spectrum basis projection. Prior to the feature
extraction the noise reduction algorithm is performed by using
a modified log spectral amplitude speech estimator (LSA) and
a minima controlled noise estimation (MC). The noise-reduced
features can be effectively used in a HMM-based recognition
system. The performance is measured by the segmental signal-
to-noise ratio, and the recognition results of the MPEG-7 stan-
dardized features vs. Mel-scale Frequency Cepstrum Coeffi-
cients (MFCC) in comparison to other noise reduction methods.
Results show that the MFCC features yield better performance
compared to MPEG-7 features.

1. Introduction
Speaker recognition is the process of automatically recognizing
who is speaking on the basis of individual information included
in speech signals. A typical speech or speaker recognition sys-
tem consists of three main modules: feature extraction, pattern
classification and decoder with speech modeling. Because fea-
ture extraction influences the recognition rate greatly, it is im-
portant in any pattern classification task. The dominant features
used for speech/speaker recognition are Mel-scale Frequency
Cepstrum Coefficients (MFCC).

Recently the MPEG-7 international standard has adopted
dimension-reduced, decorrelated spectral features based on in-
dependent component analysis (ICA) [1] basis functions for
general sound recognition framework [2] using hidden Markov
models (HMM) [3]. Many researchers are interested in compar-
ing of the performance of MPEG-7 ASP features vs. MFCCs
according to reduced dimension.

In [4], we implemented and analyzed the MPEG-7 basis
projection (BP) features for the purpose of a speaker recognition
system. We compared the results of the HMM classification
with each of the extracted feature sets.

In many speech communication applications, like audio-
conferencing, hands-free mobile telephony and speech/speaker
recognition devices, the recorded speech signals contain a con-
siderable amount of acoustic noise, which not only degrades
the subjective speech quality, but also hinders performance of
recognition systems. Therefore efficient noise reduction algo-
rithms are called for.

In this paper, the noise-reduced basis projection features are
applied to speaker recognition system in noisy environments.

The noise reduction algorithm is based on a simple modified
log spectral amplitude speech estimator (MLSA) and a minima
controlled (MC) noise estimation. For the measure of the per-
formance we compare the recognition results of the MPEG-7
basis projection features vs. MFCC.

2. Noise reduction preprocessing
The noise reduction preprocessing in combination with feature
extraction improve both speech recognition performance and
the quality of speech reconstruction under noisy conditions.

The noise reduction algorithm based on simple modified
LSA speech estimator and a minima controlled noise estima-
tion (MLSA-MC) shown in Figure 1 operates in the frequency
domain. A nonlinear frequency dependent gain function is ap-
plied to the spectral components of the noisy speech signal in
an attempt to obtain estimates of spectral components of corre-
sponding clean speech.

Figure 1:Block diagram of the noise reduction.

Let S(k) = A(k) exp(jϕ(k)), D(k), Y (k) =
R(k) exp(jθ(k)) be the Fourier expansions of clean speech
s(n) , additive noised(n), and noisy speech respectivelyy(n).

The estimation of clean speech is obtained by applying a
modified log-spectral amplitude gain functionGL to each spec-
tral component of the noisy speech signal:

O(k, l) = [GLSA(k, l)]GM (k,l)R(k, l)

= GL(k, l)R(k, l) ,
(1)

whereGM is the gain modification function andGLSA is the
gain function.GM is applied to take into account the probabil-
ity of the speech presence in the frequencyk, and it is referred
to as soft-decision modification of the optimal estimation.GM

is given by

GM (k, l) =
Λ(k, l)

1 + Λ(k, l)
, (2)

whereΛ(k, l) is a likelihood ratio between speech presence and



speech absence in frequencyk and defined by

Λ(k, l) =
1 − q(k, l)

q(k, l)

exp (v(k, l))

1 + ξ(k, l)

∣∣∣∣
ξ(k,l)=

η(k,l)
1−q(k,l)

. (3)

TheGLSA is derived by

GLSA(k, l) =
ξ(k, l)

1 + ξ(k, l)
exp

0.5

∞∫
t=v(k,l)

e−t

t
dt

 , (4)

where the a posteriori SNRγ(k, l), ξ(k, l) andv(k, l) are de-
fined as

γ(k, l) =
R2(k, l)

λd(k, l)
, (5)

ξ(k, l) =
η(k, l)

1 − q(k, l)
, and (6)

v(k, l) =
ξ(k, l)

1 + ξ(k, l)
γ(k, l) . (7)

The a priori SNRη(k, l) is defined as

η(k, l) = βG2
L(k, l − 1)γ(k, l − 1)+

(1− β)max {γ(k, l)− 1}
(8)

whereβ (0 < β < 1) is the SNR smoothing factor,q(k, l) is an
estimate of speech absence a priori probability andλd(k, l) is
a noise spectrum estimate. The amount of noise reduction can
be reduced by overestimationη(k, l) and increased by underes-
timatingη(k, l).

The a priori speech absence probabilityq(k, l) is estimated
by

q(k, l) = bq(k, l − 1) + (1− b)U(k, l) , (9)

whereb (0 < b < 1) is time-smoothing factor and the likeli-
hood ratio

U(k, l) =


1 if γ(k, l) > ζ1
ζ1−γ(k,l)

ζ1−ζ2
if ζ2 < γ(k, l) < ζ1

0 otherwise

. (10)

The noise estimate is obtained by a careful balance between
spectral power values and its minimum trackingM(k, l), using
a time-varying frequency-dependent smoothing parameter that
is adjusted by the speech presence probability in adverse envi-
ronments involving non-stationary noise, weak speech compo-
nents and low input SNR:

λd(k, l) = αd(k, l)M(k, l) + (1− αd(k, l))R2(k, l) (11)

using a smoothing parameter

αd(k, l) = α+ (1− α)p(k, l) (12)

with time-varying smoothing parameterα (0 < α < 1).
The conditional speech presence probability is defined as

p(k, l) = αpp(k, l − 1) + (1− αp)I(k, l) (13)

with time-varying smoothing parameterαp (0 < αp < 1).
The minimum valuesM(k, l) of an averageE(k, l) of the

short-time noisy spectrum are calculated within windows ofS
frames whether speech is present or not. The minimum value
for the current frame is found by a comparison with the stored
minimum value:

M(k, l) = min
s=0...S

{M(k, l − s), E(k, l)} , (14)

where the average of the short-time noisy spectrum

E(k, l) =
1

B

B−1∑
l=0

P (k, l) . (15)

P (k, l) =

1∑
m=−1

b(i)R2(k −m, l) (16)

is performed overB frames and a window functionb in fre-
quency.

The indicator functionI(k, l) for the voice activity detector
is defined by

I(k, l) =

{
1 if E(k,l)

M(k,l)
> ψ

0 otherwise
. (17)

3. Feature extraction using basis projection
The MPEG-7 feature extraction mainly consists of a Normal-
ized Audio Spectrum Envelope (NASE), a basis decomposition
algorithm and a spectrum basis projection.

3.1. Normalized Audio Spectrum Envelope (NASE)

First, the observed speech signals(n) is divided into overlap-
ping frames by hamming window function and analyzed using
the short-time Fourier transform (STFT)

S(k, l) =

N−1∑
n=0

s(n+ lM)w(n) exp

(
−j2πnk
N

)
(18)

wherek is the frequency bin index,l is the time frame index,
w is an analysis window of sizelw, andM is the hop size. By
Parseval’s theorem (i.e., so that power is preserved), there is a
further factor of1/N to equate the sum of the squared magni-
tudes of the STFT coefficients as

P (k, l) =
1

nfN
|S(k, l)|2 (19)

where the window normalization factornf is defined as

nf =

lw−1∑
n=0

w2(n) . (20)

To extract reduced-rank spectral features, the spectral coeffi-
cientsP (k, l) are grouped in logarithmic sub-bands. Frequency
channels are logarithmically spaced in non-overlapping octave
bands spanning betweenlow edgeandhigh edge. The output
of the logarithmic frequency range is the weighted sum of the
power spectrum in each logarithmic sub-band. The resulting
log-frequency power spectrum is converted to the decibel scale

D(f, l) = 10 log10 (ASE(f, l)) , (21)

wheref (f < k) is the logarithmic frequency range.
Finally, each decibel-scale spectral vector is normalized

with the RMS (root mean square) energy envelope, thus yield-
ing a normalized log-power version of the ASE (NASE). The
full-rank features for each framei consist of both the RMS-
norm gain valueRl and the normalized ASE (NASE) vector
Xl:

Rl =

√√√√ F∑
f=1

[10 log10 (ASE(f, l))]2 , 1 6 f 6 F , (22)



and

X(f, l) =
10 log10 (ASE(f, l))

Rl
, 1 6 l 6 L , (23)

whereF is the number of ASE spectral coefficients andL is the
total number of frames.

3.2. Projection features onto basis decomposition algorithm

The next step in the feature extraction is to extract a subspace
using PCA/ICA from the NASE matrix. Then, to yield a statis-
tically independent component basis, the FastICA [1] algorithm
is used.

Before FastICA algorithm, whitening closely related to
PCA is performed via eigenvalue decomposition of the covari-
ance matrix,

C = V DV T = E
{
X̂X̂T

}
, (24)

CP = D−
1
2 V T , (25)

whereX̂ is the centered data fromX, V is a matrix of orthog-
onal eigenvectors andD is a diagonal matrix with the corre-
sponding eigenvalues. In order to perform dimensionality re-
duction, we reduce the size of the matrixCP by throwing away
F − E of the columns ofCP corresponding to the smallest
eigenvalues ofD. We call the resulting matrixCE which has
the dimensionsF × E.

The whitening is done by multiplication with theF × E
transformation matrixCE andL× F matrixXE :

XE = X̂CE (26)

After extracting the reduced PCA basisCE , a further step con-
sisting of basis rotation in the directions of maximal statistical
independence is required for requiring maximum separation of
features. The input basis vectors are then fed to the FastICA
algorithm, which maximizes the information with the following
six steps:

1. Initialize spectrum basisWi to small random values

2. Newton method

Wi = E
{
X̌g

(
WT

i X̌
)}

−

E
{
g′

(
WT

i X̌
)}

Wi

(27)

whereg is the derivative of non-quadratic function.

3. NormalizationWi = Wi/‖Wi‖
4. De-correlation by Gram-Schmidt orthogonalization

Wi = W i −
i−1∑
j=1

WT
i WjWj (28)

5. NormalizationWi = Wi/‖Wi‖
6. If not converged, go back to step 2.

Steps 1-6 are executed until convergence. Then the iteration
performing only the Newton step and normalization are done
until convergenceWiW

T
i = 1. The resulting spectrum pro-

jection is the product of the NASE matrixX, the dimension-
reduced PCA basis functionsCE and the ICA transformation
matrixW :

X̃ = XCEW (29)

4. Experiments

For the performance of the noise reduction, we measure seg-
mental SNR improvement in speech segments and speech
recognition rate. For the speaker recognition we compare the
recognition results of MPEG-7 standardized features vs. Mel-
scale Frequency Cepstrum Coefficients (MFCC) concatenated
with noise reduction algorithm.

4.1. Segmental SNR improvement

To measure the performance of the proposed noise reduction
algorithm in comparison to other one-channel noise reduction
methods, the segmental signal-to-noise ratio (seg.SNR) is com-
puted byimproveSNR = seg.SNRout − seg.SNRin for
the enhanced speech signals.

Three types of background noise - white noise, car noise
and factory noise - were artificially added to different portions
of the data at SNR of 10 dB and 5 dB. The speech data used for
the segmental SNR improvement were digitized at 22.05 kHz
using 16 bits per sample.

Table 1 shows that our MLSA-MC algorithm gives best im-
provement results compared to the results of MM-LSA (mul-
tiplicatively modified log-spectral amplitude speech estimator)
[5] and OM-LSA (optimally modified LSA speech estimator
and minima controlled recursive averaging noise estimation)
[6].

Table 1:Comparison of segmental SNR improvement of differ-
ent one-channel noise estimation methods.

Input SNR [dB]
methods white car factory

noise noise noise
10 5 10 5 10 5

MM-LSA 7.3 8.4 8.2 9.7 6.2 7.7
OM-LSA 7.9 9.9 9 10.6 6.9 8.3

MLSA-MC 8.1 10 9.2 10.8 7.1 8.4

4.2. Recognition accuracy on noisy TI digits database

For evaluation of the improvement of speech recognition with
the noise reduction algorithms, the Aurora 2 database together
with a HTK software tools has been chosen and the multi-
condition training on noisy data is used.

The feature vector from the speech database with sampling
rate 8 kHz consists of 39 parameters: 13 mel frequency cep-
stral coefficients plus delta and acceleration calculations. The
mel-cepstrum coefficients were modeled by a simple left-to-
right 16-state three-mixture whole word HMM. For the noisy
speech results, we averaged the word accuracies between 0 dB
and 20 dB SNR.

In the Table 2, set A, B, and C refer to matched noise con-
dition, mismatched noise condition, and mismatched noise and
channel condition, respectively. Table 2 describes the results of
the recognition accuracy.

As seen in the results of Table 2, MLSA-MC provides
slightly better performance than MM-LSA front-end and is sim-
ilar to OM-LSA front-end. However, the MLSA-MC method is
more simple and does not need more computational cost com-
pared to OM-LSA.



Table 2:Comparisons of word accuracies (%) between several
front-ends on the Aurora 2 database.NR: noise reduction

Feature Extraction Set A Set B Set C Overall
Without NR 87.81 86.27 83.77 85.95
MM-LSA 89.68 88.43 86.81 88.30
OM-LSA 90.93 89.48 88.92 89.77

MLSA-MC 91.35 89.65 89.09 90.03

4.3. Results of speaker recognition

For speaker recognition we performed experiments where 25
speakers (11 male and 14 female) were used. Each speaker was
instructed to read 15 different sentences. After recording of the
sentences spoken by each speaker, we cut the recordings into
smaller clips: 21 training clips (about 3 minutes long), and 10
test clips (50 s) per speaker.

The speech data were digitized at 22.05 kHz using 16 bits
per sample. The non-stationary Gaussian white noise is artifi-
cially added to the speech database at the SNR ratios ranging
from clean over 20 dB to 5 dB in steps of 5 dB.

The ASP features based on PCA/ICA basis were derived
from speech frames of length 30 ms with a frame rate of 15 ms.
The lower and upper boundary of the logarithmic frequency
bands are 62.5 Hz and 8 kHz that are over a spectrum of 7 oc-
taves.

The training phase is done only on a clean speech signal
without noise reduction preprocessing, while test phase is done
on a noisy speech signal (mismatched conditions).

In order to compare the performance of MPEG-7 standard-
ized features vs. MFCC approach for speaker recognition we
used MFCC coefficients without delta and acceleration calcula-
tions. For the recognizer a 7-state left-right HMM model were
applied.

The results of speaker recognition are shown in Table 3.
For decreasing SNR ratios, the speaker recognition rate with-
out noise reduction is seriously decreased due to mismatched
conditions. In noisy environments the MPEG-7 ASP, which is
projected onto PCA/ICA basis from the clean speech training
database, yields better performance than MFCC.

However, the concatenation of MFCC with noise reduction
using MLSA-MC yields a higher recognition rate than the con-
catenation of MPEG-7 ASP features with MLSA-MC. Overall
the features with noise reduction based on MLSA-MC signifi-
cantly improve the speaker recognition system performance.

5. Conclusions

In this paper, we evaluate the efficiency of MPEG-7 dimension-
reduced, decorrelated log-spectral features vs. Mel-scale Fre-
quency Cepstrum Coefficients (MFCC) for the speaker recog-
nition in noisy environments. Our results show that the MFCC
features yield better performance compared to MPEG-7 ASP in
combination with the noise reduction pre-processing on noisy
speaker recognition task. In the case of MFCC, the process of
feature extraction is simple and fast while the extraction of the
MPEG-7 ASP is more time and memory consuming compared
to MFCC.

For our further research, we will compare the performance
of MPEG-7 ASP features based on several basis decomposition
algorithms vs. cepstrum-domain feature compensation.

Table 3:Comparison of speaker recognition accuracies (%) be-
tween several feature extraction methods.FE: feature extrac-
tion, NR: noise reduction,Cl: clean speech,P: basis projection
based onPCA, I: basis projection based onICA, M: MFCC, N:
noise reduction.

(a) Recognition accuracy with feature dimension 7

Speech Material
FE Cl. Noisy speech

20 dB 15 dB 10 dB 5 dB
P 65.8 24.9 17.3 10.2 7.6

P+N 50.7 55.1 51.6 36 22.2
I 66.2 27.6 16.4 11.1 7.6

I+N 55.6 58.2 53.8 38.2 21.3
M 71.1 23.6 17.8 10.7 7.6

M+N 63.6 58.2 51.1 37.3 21.8

(b) Recognition accuracy with feature dimension 13

Speech Material
FE Cl. Noisy speech

20 dB 15 dB 10 dB 5 dB
P 83.6 48.9 42.7 32.9 27.6

P+N 82.2 76 65.8 49.8 38.7
I 84.9 47.6 41.3 34.2 24.9

I+N 82.2 77.8 67.1 56.9 37.3
M 91.6 50.7 24.9 11.6 4.4

M+N 90.7 81.8 78.2 64.4 39.6

(c) Recognition accuracy with feature dimension 23

Speech Material
FE Cl. Noisy speech

20 dB 15 dB 10 dB 5 dB
P 90.2 61.3 48 36.9 28.9

P+N 92.9 80.9 75.1 56.4 43.1
I 92.9 66.2 53.3 39.6 28.9

I+N 94.7 82.2 78.2 64 49.3
M 95.6 66.2 37.8 24 19.6

M+N 94.7 92.4 89.3 82.2 57.8
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