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Abstract

In this paper we present a two stage noise reduction algo-
rithm for speech enhancement. The speech noise removal al-
gorithm is based on a two stage noise filtering LSAHT by log
spectral amplitude speech estimator (LSA) and harmonic tun-
neling (HT) with spectral subtraction. The performance of the
system is measured by the segmental signal-to-noise ratio, mean
opinion score (MOS) tests, and the recognition accuracy of an
Automatic Speech Recognition (ASR) in comparison to other
noise reduction methods.

1. Introduction
In many speech communication applications including mobile
voice communications and speech recognition, the recorded and
transmitted speech signals contain a considerable amount of
acoustic noise. The background noise causes a signal degrada-
tion, which can lead to total unintelligibility of the speech and
decreases the performance of speech coding and speech recog-
nition systems. In speech enhancement, on of the main objec-
tives is to maximize noise reduction while minimizing speech
distortion. To attain such an objective, many approaches based
on short-time spectral amplitude estimators have been devel-
oped. Such spectrum attenuation technique consists of two ba-
sic steps: (i) estimation of noise spectrum and (ii) the estimation
of speech.

Concerning noise estimation, Martin [1] has proposed an
efficient noise estimator based on minimum statistics to track
non-stationary noise. An alternative solution is proposed by
Cohen [2] who uses the minimum statistics as a voice activity
detector and estimates the noise by a recursive averaging. The
noise can also be tracked while speech periods by exploiting the
harmonic structure of voiced speech. For this, Ealey et al. [3]
proposed to estimate the noise between the harmonic compo-
nents of the voiced speech and in the harmonic spectral peaks
of the speech the noise estimation is achieved by tunneling.

Regarding speech estimation, spectral substraction based
on the modified Wiener rule is a commonly applied method.
In this, a good trade-off between overestimation factor and a
spectral floor enables successful reducing musical tones.

Another efficient speech estimator such as log-spectral am-
plitude (LSA) [4] spectral gain function based on a Gaussian
statistical model has been proposed by Ephraim and Malah.

In this paper we present a speech enhancement algorithm
based on a two stage noise reduction method called LSAHT. A
first noise reduction stage uses a modified minimum controlled
recursive averaging noise estimation and LSA speech estimator.

A second noise reduction stage is achieved by harmonic tunnel-
ing (HT) and spectral substraction. Especially, the speech en-
hancement based on LSAHT in combination with noise robust
front-end improves both speech recognition performance and
the quality of speech reconstruction at back-end of distributed
speech recognition system under noisy conditions.

2. Structure of speech enhancement
algorithm

Usually, the speech enhancement problem is addressed from the
estimation point of view in which the clean speech is estimated
under the uncertainty of speech presence [5] in noisy obser-
vations. The idea of utilizing the uncertainty of speech pres-
ence in the noisy spectrum has been applied by many authors
to improve the performance of speech enhancement systems. In
this paper, we present a simple modified log-spectral amplitude
(LSA) speech estimator [4] and harmonic tunneling (HT) [3].

A simplified block diagram of a two stage noise filtering
system LSAHT based on LSA speech estimator and HT is
shown in figure 1.
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Figure 1: Block diagram of the speech enhancement

Let x(n) denote the 8 kHz sampled input speech, which is
assumed to be clean speech s(n) and additional noise d(n). The
observed noisy signal x(n) is divided into overlapping frames.
A pre-emphasis filter is then used to emphasize the higher fre-
quency components. In the frequency domain the short-time
frequency components can be expressed with their magnitude
A(k, i) and their phase φ(k, i), where i denotes the time frame
index and k the frequency index:

X(k, i) = A(k, i)ejφ(k,i) (1)

The phase φ(k, i) remains unchanged during the noise re-
duction algorithm. We will only act on the short-time magni-
tude spectrum A(k, i).



2.1. Modified log spectral amplitude estimator

First, a modified MCRA noise estimation is implemented.
Therefore, an average of the short time spectrum is performed
over B frames by:

E(k, i) =
1

B

B−1∑

i=0

A(k, i). (2)

The minimum values M(k, i) of the averaged short-time
magnitude E(k, i) spectrum are calculated within windows of
S frames. The minimum value for the current frame is found by
a comparison with the stored minimum value:

M(k, i) = min
s=0..S

{M(k, i− s), E(k, i)}, (3)

This minimum is used as a threshold and controls voice ac-
tivity detectors in each subbands. The indicator function for the
voice activity detectors I(k, i) is defined by:

I(k, i) =





1 if E(k, i) < M(k, i)T̃ (k, i)
A(k, i) < M(k, i)T (k, i) ,

0 otherwise
(4)

where T (k, i) and T̃ (k, i) are threshold functions:

T (k, i) = 1 + 4 exp
[
−GLSA(k, i− 1)

]
(5)

and
T̃ (k, i) = 1 + 0.5 exp

[
−GLSA(k, i− 1)

]
. (6)

T (k, i) and T̃ (k, i) depend on the spectral gain factor from
the previous block GLSA(k, i − 1). If GLSA(k, i − 1) is
high speech is more probable and the threshold is decreased.
The first constrained E(k, i) < M(k, i)T̃ (k, i) will detect all
speech pauses since the threshold function is low in this case
and the second constraint A(k, i) < M(k, i)T (k, i) ensures
that there is only speech present.

The a priori probability for speech absence is then obtained
by a smoothing equation using the indicator function I(k, i):

q(k, i) = αqq(k, i− 1) + (1− αq)I(k, i), (7)

where αq ∈ [0, 1] is the time-smoothing factor and q(k, i−
1) denotes the speech absence probability from the previous
frame. The noise estimation λd(k, i) is then obtained by a re-
cursive smoothing over the time:

λd(k, i) = αd(k, i)λd(k, i− 1) + (1− αd(k, i))A(k, i) (8)

using a smoothing parameter controlled by the speech presence
probability q(k, i):

αd(k, i) = 1− Fd|γ(k, i− 1)|q(k, i) (9)

with Fd ∈ [0, 1] constant.
Now, we can define the a posteriori signal-to-noise-ratio

SNR γ(k, i), the a priori SNR ξ(k, i), and ν(k, i):

γ(k, i) =
A(k, i)

λd(k, i)
, (10)

ν(k, i) =
ξ(k, i)

1 + ξ(k, i)
γ(k, i), and (11)

ξ(k, i) = βGLSA(k, i−1)
γ(k, i)

1− q(k, i) +(1−β)P{γ(k, i)−1}
(12)

using

P{γ(k, i)− 1} =

{
γ(k, i)− 1 if γ(k, i) ≤ 1
0 otherwise (13)

where β ∈ [0, 1] is the SNR smoothing factor. The am-
plitude gain function GLSA(k, i) is then calculated with these
parameters and the log spectral amplitude rule:

GLSA(k, i) =
ξ(k, i)

1 + ξ(k, i)
exp
(

0.5

∫ ∞

t=ν(k,i)

e−t

t
dt
)
, (14)

The output of the first noise reduction stage is then esti-
mated by:

O(k, i) = GLSA(k, i)A(k, i). (15)

2.2. Harmonic tunneling and spectral substraction

Although this LSA estimator proved very efficient in reducing
musical noise phenomena, there is still some remaining noise
which lowers the speech quality. Some applications are very
sensitive to this remaining residual background noise after LSA
estimation. Such applications are low bit rate speech coders and
speech recognition systems. Therefore, a second noise reduc-
tion stage is employed. From the magnitude spectrum O(k, i),
output of the first noise reduction stage, the voicing level is ob-
tained by normalizing spectral autocorrelation at a lag equal to
a pitch period in frequency domain. At the next stage, the peak
detector is used to find the number of peaks and the frequency
bin of the peak corresponding to the highest harmonic within the
auto-correlation. Each of these candidate peaks is analyzed to
categorize it as a peak coming from either a voiced speech har-
monic or noise. To determine the harmonic amplitude O(h, i)
and harmonic frequency in the frame h, we proceed as follows:

O(h, i) = maxm∈[a,b](|O(m, i)|), (16)

where a = floor((harmo−c)(f0/Sr/N)) using the sam-
pling rate Sr and the estimated fundamental frequency f0, and
b = ceil((harmo+c)(f0/Sr/N)). c ∈ [0, 0.5] determines the
tolerated non-harmonicity. The estimate λHT (k, i) of the noise
is then obtained by sampling the noise spectrum in the tunnels
between the harmonic spectral peaks and by interpolation of
the frequency and time from the adjacent noise spectra in the
surrounding tunnels. Finally, the enhanced spectral amplitude
S̃(k, i) is achieved by spectral subtraction:

S̃(k, i) = O(k, i)− λHT (k, i). (17)

In figure 2 the results of the speech enhancement algorithm
are shown. Figure 2 (a) denotes spectral magnitude of the clean
speech. In figure 2 (b) f16 cockpit noise was artificially added to
the clean speech at SNR of 7 dB. Its spectral magnitude at fre-
quency bin f = 9 is illustrated. The valleys of figure 2 present
a noise estimation as bold line while peaks correspond to the
spectral amplitude of the noisy speech signal (thin line). Fi-
nally, 2 (d) presents the magnitude of the enhanced speech.

3. Noise Robust Front-End Speech
Recognition

Our LSAHT speech enhancement algorithm can be used for ro-
bust feature extraction at an extended front-end for Distributed
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(a) spectral magnitude of
clean speech

(d) spectral magnitude of
enhanced speech

(c) spectral magnitude of noisy
speech and estimated noise

(b) spectral magnitude of
noisy speech

Figure 2: Spectral magnitude of clean, noisy and enhanced
speech and noise estimation.

Speech Recognition (DSR) of tonal languages as well as speech
reconstruction at the back-end. In such applications noise re-
duced features are extracted and transmitted with some param-
eters, i. e., pitch period, the number of harmonic peaks.

We used 13 MFCC coefficients as the noise reduced fea-
tures for back-end speech recognition and reconstruction. The
used frequency range is between 64 Hz and 4000 Hz and the
noise-reduced power spectrum S̃(k, i) is first mel-filtered into
23 half-overlapping bands. The 23 spectral values of mel-
filtering are then logarithmised by a natural logarithm function.
With a 23-point Discrete Cosine Transformation, the 13 MFCC
coefficients are calculated.

For a low bit rate speech compression and decompression
we use the method in [6]. The pitch period value is quantized
using 7 bits. The number of harmonic peaks is quantized us-
ing 3 bits for the past, current and future frames. The MFCC
feature vectors are quantized using a 4-split VQ with 37 bits.
The streams of the compressed MFCC feature vectors, the com-
pressed pitch period value, and the compressed number of har-
monic peaks are multiplexed together to form the output bit
stream for storage or transmission.

3.1. Reconstruction of speech at back-end server

The transmitted bit stream to server is fed into a stream of com-
pressed MFCC feature vectors, a stream of compressed pitch,
and a stream of number of harmonic peaks. The decompressed
MFCC feature vectors may be used by the speech recognition
back-end. For the speech reconstruction, the MFCC feature
vectors are transformed back into the Mel-frequency domain by
inverse DCT and the spectral magnitude S̆(i, l) is computed by
exponentiation from the log-spectra [6].

Speech is synthesized using a harmonic sinusoidal model
from the decompressed MFCC feature vectors, the decoded
pitch values, and the number of harmonic peaks for voicing de-
cision by

s̃i(j) =

L−1∑

l=0

S̄l(j) cos
(
φ̃l(j)

)
, (18)

where the speech sample s̃i(j) is synthetisized as the sum of a
number of harmonically related sinusoids with amplitude S̄l(j)
at multiples of the fundamental frequency and synthetic phase
φ̃. For voiced speech, the model is based on the assumption

that the perceptually important information resides mainly in
the harmonic samples of the pitch frequency. Because of the
relatively slow variation in the amplitude between successive
frames and the insensitivity of the human auditory system to
slight inconsistencies in the speech amplitude, a straight for-
ward linear interpolation is given by

S̄il (j) = S̆i0 · j +
(
S̆i+1
l − S̆il

)( j
L

)
. (19)

The phase is reconstructed from the decoded pitch values
using a quadratic model which assumes linear pitch variations:

φ̃il(j) = lf i−1
0 j +

l(f i0 − f i−1
0 )

2N
j2 + ϕl, (20)

where f i−1
0 , f i0 are the pitch frequency values for the (i− 1)th

frame and the ith frame respectively,N is the frame size in sam-
ples, and ϕl is zero for harmonics below a threshold frequency
called voicing and a random variable uniformly distributed in
[−π, π] for harmonics above the voicing frequency. For un-
voiced speech, the magnitude spectrum is sampled at 100 Hz
and a uniformly distributed random phase is applied to each
frequency component.

4. Experimental Results
The performance of the proposed algorithm is measured us-
ing segmental SNR improvement in speech segments, recog-
nition accuracy improvement, subjective study of speech spec-
trograms, and listening test.

4.1. Segmental SNR improvement

To measure the performance of the proposed algorithm in com-
parison to other one-channel noise reduction methods, the seg-
mental signal-to-noise ratio (segSNR) at back-end of DSR is
computed by SNRimprove = segSNRout − segSNRin for
the enhanced speech signals at back-end of DSR. Three types
of background noise - white noise, car noise and factory noise -
were artificially added to different portions of the data at SNR
of 5 dB and -5 dB. Table 1 shows that LSAHT algorithm gives
best results for input SNR 5 dB and -5 dB compared to the re-
sults of PSS, MS, DLSA and NSMR.

Input SNR [dB]
methods white car factory

5 -5 5 -5 5 -5
PSS 4.3 7.3 5.3 8.1 4.1 7.3
MS 7.8 12.3 8.4 13.5 7.4 11.9

DLSA 7.9 12.6 8.6 13.2 7.2 12.1
NSMR 8.9 13.6 9.1 13.3 8.5 12.7
LSAHT 9.1 14.9 11.3 15.7 10.0 14.3

Table 1: Comparison of segmental SNR improvement of differ-
ent one-channel noise estimation methods. PSS: Power Spec-
tral Subtraction, MS: spectral subtraction based on minimum
statistics [1], DLSA: log-spectral amplitude speech estimator by
spectral minimum tracking [7], NSMR: the ratio of the spectral
amplitude of the noisy speech to its minimum [8] and LSAHT:
the proposed noise reduction method using two stage noise fil-
tering.



4.2. Recognition accuracy in a DSR system

For evaluation of the improvement of speech recognition with
the presented noise reduction algorithm, the Aurora 2 database
together with a hybrid HMM/MLP ASR system (351 inputs,
420 hidden units and 24 outputs) using forward-backward train-
ing algorithm [9] have been chosen and two training modes are
used: training on clean data and multi-condition training on
noisy data. The feature vector consists of 39 parameters: 13
mel frequency cepstral coefficients plus delta and acceleration
calculations. The mel-cepstrum coefficients are fed to the MLP
(multi-layer perceptron) for the non-linear transformation con-
sisted of 9 frames. The proposed LASHT-filtering front-end
was compared to a NSMR front-end, LSA front-end, and MS
front-end. For the noisy speech results, we averaged the word
accuracies between 0 dB and 20 dB SNR. In the table 2, set A,
B, and C refer to matched noise condition, mismatched noise
condition, and mismatched noise and channel condition, respec-
tively. Table 2 describes the results of the recognition accuracy.

Training Mode Set A Set B Set C Overall
Multicondition 86.91 86.61 86.66 86.73

Clean only 72.34 72.70 86.62 77.22
Average 79.63 79.65 86.64 81.97

(a) Word accurancy of DSLA front-end

Training Mode Set A Set B Set C Overall
Multicondition 89.92 88.41 86.86 88.40

Clean only 74.16 73.01 82.13 76.43
Average 82.04 80.01 84.50 82.42

(b) Word accurancy of MS front-end

Training Mode Set A Set B Set C Overall
Multicondition 89.65 88.35 86.88 88.29

Clean only 79.28 78.82 82.13 80.08
Average 84.47 83.59 84.51 84.19

(c) Word accurancy of NSMR front-end

Training Mode Set A Set B Set C Overall
Multicondition 91.45 90.21 89.13 90.26

Clean only 84.32 82.41 82.78 83.17
Average 87.89 86.31 85.96 86.69

(d) Word accurancy of LSAHT front-end

Table 2: Comparisons of word accuracies (%) between four
noise reduction algorithms (DSLA, MS, NSMR and LSAHT) on
the Aurora 2 database

As seen in the results of table 2, LSAHT provides much
better performance than DLSA algorithm, MS algorithm, and
NSMR algorithm.

4.3. Speech spectrograms and listening test

In order to visualize the effect of the noise reduction algorithm
based on LSAHT, the spectrograms of noisy speech and the re-
constructed speech at back-end server are shown in figure 3.
The noisy spectrograms in the upper image of figure 3 was
recorded in a busy street with a SNR of about 5 dB. The spectro-
gram of the reconstructed speech at back-end server is depicted
in the lower parts of figure 3. Dark gray areas correspond to the
speech components while background noise is light gray. The

picture clearly indicates that only speech portions pass the sys-
tem whereas the noise is suppressed. To evaluate the quality of
four (MS,DLSA, NSMR, LSAHT) speech enhancement meth-
ods of DSR back-end speech synthesizers, a subjective Mean-
Opinion-Score (MOS) was performed with noisy speech cor-
rupted by car noise at SNR 10 dB. The noisy uncoded speech
scored 2.16. The MS, the DLSA and, NSMR and LSAHT back-
end synthesizer scored 2.53, 2.43, 2.65 and 2.83 respectively.

 

Figure 3: Spectrograms of noisy speech, reconstructed speech
at back-end of DSR system.

5. References
[1] R. Martin, “Spectral subtraction based on minimum statis-

tics”, Proceedings of the Seventh European Signal Pro-
cessing Conference, EUSIPCO-94, Edinburgh, Scotland,
13 16 September 1994, pp. 1182 1185.

[2] Israel Cohen, “Noise Estimation by Minima Controlled
Recursive Averaging for Robust Speech Enhancement”,
IEEE Signal Processing Letters, vol. 9, no. 1, January
2002.

[3] Ealey, D., Kelleher, H., Pearce, D., “Harmonic tunnel-
ing: tracking non-stationary noises during speech”, in EU-
ROSPEECH, Aalborg, pp. 437–410, Sep. 1999.

[4] Y. Ephraim, D. Malah, “Speech enhancement using a min-
imum mean-square error log-spectral amplitude estima-
tor”, IEEE Trans. Acoust. Speech Signal Process. ASSP-
33 (2) (April 1985) 443–445

[5] Malah, D., Cox, R. V., AccardiLee, A. J., “Tracking
speech-presence uncertainty to improve speech enhance-
ment in non-stationary noise environments”, in Proc.
ICASSP, Phonix, AZ, vol. 1, pp. 201–204, March 1999.

[6] Ramabadran, T., Meunier, J., Jasiuk, M., and Kusher B.,
“Enhancing Distributed Speech Recognition with back-
end speech reconstruction”, in EUROSPEECH, pp. 1859–
1862, Sep. 2001.

[7] Doblinger, G., “Computationally efficient speech en-
hancement by spektral minimum tracking in subbands”,
in EUSPICO, pp. 1513–1516, Sep. 1995.

[8] Kim, H.-G., Ruwisch, D., “Speech enhancement in non-
stationary noise environment”, in ICLSP, pp. 1829–1832,
Sep. 2002.

[9] Hennbert, J., Ris, C., Bourlard, H., Renals, S., Mor-
gan, N., “Estimation of global posteriors and forward-
backward training of hybrid HMM/ANN Systems”, in
EUROSPEECH, pp. 1951–1954, Sep. 1997


