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Abstract 
 
The 3D reconstruction from 2D broadcast video is a 
challenging problem with many potential applications, such 
as 3DTV, free-viewpoint video or augmented reality. In this 
paper, a modular system capable of efficiently 
reconstructing 3D scenes from broadcast video is proposed. 
The system consists of four constitutive modules: tracking 
and segmentation, self-calibration, sparse reconstruction 
and, finally, dense reconstruction.  This paper also 
introduces some novel approaches for moving object 
segmentation and sparse and dense reconstruction 
problems. According to the simulations for both synthetic 
and real data, the system achieves a promising performance 
for typical TV content, indicating that it is a significant step 
towards the 3D reconstruction of scenes from broadcast 
video. 
 
 
1. Introduction 
 
3DTV technology is currently being investigated in many 
research labs worldwide [1]. In this context, conversion of 
existing 2D video material to 3D is of much interest. Many 
fundamental algorithms have been developed to reconstruct 
3D scenes from an uncalibrated video sequence [2][3]. 
However, most of these approaches deal with the 
reconstruction of static scenes [2]. When the scene is 
dynamic, i.e., contains independently moving objects (IMO), 
they usually fail, since the triangulation techniques used for 
the reconstruction can only deal with one single relative 
motion. 

In this paper, a complete system for the 3D 
reconstruction of a scene from broadcast video is proposed. 
The input to the system is an uncalibrated 2D video 
sequence captured from typical TV broadcast, and the 
output is a dense 3D reconstruction of the scene observed in 
the sequence. In addition to a complete 2D/3D conversion 
system, we are presenting two key innovations: a novel 

geometric segmentation approach for dynamic scenes and a 
prioritized sequential algorithm for sparse 3D reconstruction 
and camera path estimation. An overview of the complete 
2D/3D conversion scheme is illustrated in Figure 1.1. 

The proposed system is composed of four modules: 
Feature tracking and segmentation, self-calibration, camera 
pose estimation and sparse 3D reconstruction, and finally, 
dense reconstruction. Each module deals with a specific task 
and is the subject of a distinct field of research, thus, 
deserves an individual overview of the relevant literature. 
However, since the self-calibration is not the focus of this 
study, it is enough to point out that the implemented 
algorithm is based on the approach of Mendonca [4].   
 
1.1. Feature Tracking and Segmentation 

The typical features for 3D reconstruction problems are 
corners. As long as the input is a sequence of consecutive 
frames, which is guaranteed in broadcast video, the Kanade- 
Lucas-Tomasi tracker (KLT) successfully tracks features 
throughout the sequence [5].  

In the case of a dynamic scene, an additional step is to 
segment the feature set into partitions conforming to the 
individual motions, to improve the quality and the reliability 
of the feature correspondence set for further processing 
stages. The solution approaches for the feature segmentation 

Figure 1.1: Block diagram of the proposed system 



 

problem can be classified into four categories. Optical flow-
based methods assume that the scene is composed of planes 
at various depths, and utilize a simple clustering to achieve 
the desired segmentation [6]. Another set of solutions utilize 
the eigen decomposition of the affinity matrix, a structure 
which contains the similarity information among the features 
[7]. Geometric methods exploit the constraints imposed by 
the epipolar geometry and the rigid body motion 
assumption. The most common constraint is the fundamental 
matrix [8]. However, more general model selection-based 
methods are also available [9]. Finally, statistical methods 
also hold a niche in this field [10]. 

 
1.2. Sparse Reconstruction 

In order to achieve any sparse reconstruction of the scene 
from video frames, the multi-frame structure from motion 
(MFSfM) problem should be solved. The basic solution 
approaches are the batch and the sequential methods. The 
best-known example of the former is the factorization 
method [3]. In the sequential methods, the problem is either 
cast into the framework of state estimation in dynamic 
systems [11], or the framework of inverse-MSE filtering to 
estimate an unknown constant vector (structure) [12]. 

While uncommon, there also exist techniques to solve 
the MFSfM problem simultaneously for all bodies involved, 
employing the multi-body extension of the factorization 
method [13], or particle filter algorithms [10]. 
 
1.3. Dense Reconstruction 

The dense reconstruction problem is formulated as the depth 
map estimation of a single reference view using multiple 
views. In the literature, the proposed solution methods cover 
a wide range of techniques. Although their focus is primarily 
on the dense disparity estimation for stereo vision, it is 
possible to consider the multiple-view case as a 
generalization of the two-view case. Nearly a complete 
taxonomy of the dense disparity estimation from stereo 
vision can be found in [14]. Regarding this taxonomy, the 
approaches on dense depth estimation can be broadly 
classified into two groups. The methods in the first group 
utilize local optimization techniques, such as window-based 
approaches [15], while the second group consists of the 
methods employing global optimization approaches. Global 
methods yield more reliable results, as they easily 
incorporate the regularization tools to achieve a better 
solution. The graph-cut [16], Markov random field (MRF) 
based [17], and partial differential equation (PDE) based 
methods [18] can be listed as typical examples of global 
approaches.  
 
1.4. Outline of the paper 

The organization of the paper is as follows: In the next 
section, the feature tracking and segmentation module is 

discussed in detail. The sparse and dense reconstruction 
modules are explained in Sections 3 and 4, respectively. The 
simulation results for the whole system are presented in 
Section 5. Finally, Section 6 concludes this paper with a 
discussion and future work. 
 
2. Feature Tracking and Segmentation 
 
2.1. Feature Tracking 

Since a large baseline length is usually preferred for both the 
segmentation and the reconstruction processes, a slightly 
modified version of the well-known pyramidal KLT tracker 
is used to track features throughout the video sequence. The 
first modification is the replacement of the lost features by 
adding new corners extracted from the current frame. 
Another improvement is related to the key-frame selection to 
handle the baseline problem for the segmentation and the 
reconstruction part. In the initial segmentation step, at least a 
single frame pair is needed that yields a reliable F-matrix 
estimate for the classification of the feature trajectories, 
depending on whether they belong to the background or to 
an independently moving object (IMO). Since the baseline 
between consecutive frames is small or the camera rotates 
about its center, a 2D motion model, H (homography), can 
be used to transfer features from one frame to their 
corresponding positions in the second frame [19]. If the 
baseline increases during the tracking process and if the 
features belong to a 3D scene structure, the projection error 
increases as well, i.e., the 2D motion model must be 
upgraded to a 3D motion model, F (epipolar geometry). 
Hence, the current frame can be selected as a key-frame for 
a reliable F-matrix estimation.  

The Geometric Robust Information Criterion (GRIC) 
[9] is a robust model selection criterion to extract key-
frames. An exhaustive study of this criterion is given in [20].  

 
2.2. Segmentation 

Once the feature trajectories are constructed and the key-
frames are selected, trajectory segmentation is handled by 
geometric means. For each independent motion in the 
sequence, there exists a corresponding F-matrix, Fi, which 
satisfies the epipolar constraint 
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where x1 and x2 are corresponding points in two views. A 
RANSAC (RANdom Sample Consensus)-based F-matrix 
estimation algorithm [21] identifies the feature pairs 
belonging to the dominant motion and labels the rest of 
feature pairs as outliers. If the same procedure is repeated 
with the outliers (re-RANSAC), some of them should satisfy 
the epipolar constraint with respect to a new F-matrix, which 



 

should correspond to the motion of an IMO. This procedure 
is repeated until no more reliable F-matrices can be found, 
which means that all significant IMOs are detected. Hence, 
upon successive iteration of the procedure for all key-
frames, the feature trajectories can be classified, either as 
background or IMOs.  

For the cases, where one of the IMOs has a similar 
motion as the camera, some features may be classified as 
IMO features, even if they belong to the background or 
another IMO. This problem is handled by considering the 
distance of each of the segmented features to their centroid. 
A feature is rejected, if its distance is higher than a 
predefined threshold dependent on the standard deviation of 
the distances: 
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where c is the centroid of the data set, ν is a weighting factor 
and σ is the standard deviation.  
 The trajectories, which are labeled as outliers after 
RANSAC, re-RANSAC and the distance check are 
discarded from the trajectory set. Finally, guided matching is 
employed [19] along the epipolar lines in the key-frames to 
increase the number of IMO features. The segmentation 
algorithm can be summarized as follows: 
 
Algorithm 1: Trajectory segmentation algorithm 
1. Compute the F-matrix corresponding to the first and the 

second key-frame by using a RANSAC-based procedure 
and label the inliers as background trajectories. 

2. Compute the F-matrix with the outliers of Step 1 by 
using again RANSAC and label the inliers as IMO 
trajectories. 

3. Compute the centroid of the inliers of Step 2 and check 
their distances. Reject the features whose distances are 
higher than a threshold. 

4. Increase the number of features on the IMO in 
consecutive key-frames with guided-matching. 

5. Repeat Step 2 to 4, as long as the F-matrix estimation is 
reliable and most of the remaining features are spatially 
close. 

6. Proceed to the next key-frame. Estimate the F-matrix 
between the last and the current key-frame for each 

motion using the labeled trajectories and classify new 
trajectories using Step 1 to 5. 

7. Repeat Step 6 for all key-frames. 
 
Figure 2.1 gives an example of the background and IMO 
trajectory segmentation (frame 1 and 13 of the “Desk”-
sequence captured in an office). The green crosses indicate 
the background trajectories and the blue squares belong to 
the IMO.  
 
3. Sparse Reconstruction 
 
The sparse reconstruction module handles the reconstruction 
of each element in the scene, by applying a  novel sequential 
MFSfM approach, which is described below, on each 
segmented feature partition. The information extracted in 
this module is incorporated into the dense estimation 
procedure, either in the form of required parameters (camera 
pose estimates and frame set to be used in the 
reconstruction), or initial estimates (point cloud). 
 
3.1 Prioritization 

A typical video sequence contains a substantial amount of 
information. For example, a 200-frame sequence has 19900 
frame pairs that can be used for triangulation. However, it is 
neither feasible, nor desirable to process all these pairs. 
Hence, the most significant design criterion for the sparse 
reconstruction module is to achieve a reliable structure and 
pose estimate, while maintaining a reasonable computational 
efficiency. 

The batch methods are known to be efficient in handling 
such vast amount of data. However, they lack a significant 
facility that exists in sequential methods: The intermediate 
results, which are obtained from the already processed 
frames, can be incorporated into the processing of the 
remaining ones, to improve the final result. Obviously, 
utilization of this capability renders the result dependent on 
the processing order of the frames, which brings up the issue 
of how to determine a preferable order. Regarding to this 
issue, a novel solution is proposed in the following 
paragraphs. 

Another motivation to study this question is the fact that 
consecutive frames in a video sequence have very narrow-
baseline. Hence, it is not possible to process them in their 
default (temporal) order, since a wide-baseline is often 
essential for the success of the structure estimation. A 
common practice is to employ frame skipping, however, a 
reliable frame pair is not guaranteed, unless some properties 
of the motion is known beforehand. 

For properly ordering (prioritizing) the frame pairs, a 
priority metric should be determined. The following two 
criteria should be considered for such a metric: 
 

Figure 2.1: Trajectory segmentation of the “Desk”-sequence 

 



 

•••• Fast convergence to a reliable estimate: Since the 
quality of the subsequent reconstructions depend on the 
current (intermediate) structure estimate, the errors in the 
first few pairs might cause the entire estimation procedure to 
collapse. 
•••• Fast recovery of the whole structure: The number of 
reconstructed 3D points should be maximized, while 
processing minimum number of frame pairs.  
 
In this study, a novel metric is considered, in terms of the 
weighted sum of the baseline distance and a nonlinear 
function of the number of matches. For the computation of 
the relative poses of all frame pairs, it is enough to pick a 
frame pair and estimate the locations of the rest of the 
cameras in the sequence relative to the structure estimated 
from this pair. These pose estimates are later used in the 
sequential 3D reconstruction step. The number of matches 
between the frames is obtained from the trajectories. 

The priority metric, p, utilized in the algorithm to 
evaluate the feasibility of a frame pair for reconstruction is 
defined as 
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where d is the baseline distance between the cameras, n is 
the number of feature matches, a, b and c are the design 
parameters of the sigmoid function appearing in the second 
term. The nonlinear (sigmoidal) weighting keeps the 
contribution of the second term within a bound, when there 
is a relatively small or large number of matching features. 
As for the design parameters, a should be chosen such that, 
the contributions of the two terms of the metric are balanced. 
b and c determine the sensitivity to the number of points and 
the cut-off points. They should be chosen such that the 
sigmoid term is responsive to a reasonably large range of 
number of features. 
 
3.2 Prioritized Sequential Reconstruction 

For the sake of clarity of the following discussion, two 
definitions are necessary. 
 
Definition 1: A sub-estimate is a structure estimate obtained 
by the triangulation of the matching features in a single 
frame pair1. 
 
Definition 2: A sub-reconstruction is an intermediate 
structure estimate obtained form a collection of sub-

                                                 
1 It should be stressed that, while in this study a 2-view 
reconstruction approach is preferred due to the availability of 
relatively simple, mature and reliable techniques, a sub-estimate 
can be constructed by any of the existing methods. 

estimates belonging to a subset of frames of the video 
sequence.  
 
Two distinct sub-reconstructions cannot have any common 
frames. The global motion and structure estimate is 
computed by merging the sub-reconstructions. 
 The core of the reconstruction algorithm is based on 
[12]. The basic idea is to start with an initial reconstruction 
by triangulation, and add new frames by first estimating their 
pose by 3D-2D matches, and then to compute the sub-
estimate corresponding to the last and the current frame, 
again via triangulation. This sub-estimate is used to add new 
points and refine the reconstruction for the existing ones. 
However, this algorithm is designed to process the frame 
pairs in a certain order (e.g, F1-F2, F2-F3, F3-F4 , …), and 
changing the order of frame pairs requires some 
modifications. 

Consider the pairs Fm-Fn and Fp-Fq., which are assumed 
in priority order with respect to the proposed metric in (3.1). 
If the pairs have one common frame, then they can be 
processed by using the original algorithm in [12], (i.e. n=q, 
then Fm-Fn, Fn-Fp) to obtain a single sub-reconstruction. If 
they have no common frames, two separate sub-
reconstructions (each including a single sub-estimate) can be 
computed for each frame pair. Assume the latter occurs and 
let the sub-reconstructions be T1 and T2. Next, consider a 
third pair Fr-Fs. The cases that it has no common frames 
with neither of the sub-reconstructions, or has one with 

Figure 3.1: Sequential reconstruction scheme example 



 

either of them are already handled. A new possible case is, 
one member belongs to T1 and the other to T2 (i.e. r=m and 
s=q). 

The fusion of T1 and T2 requires the estimation of a 
similarity transformation defining a mapping between the 
points of the sub-reconstructions. The fundamentals of the 
estimation procedure are described in [19]. The basic idea is 
first to determine 3D-3D matches, then to use RANSAC to 
find a projective transformation that maps as many matches 
as possible, then to refine the estimate by using all available 
pairs and finally to further refine the estimate by a nonlinear 
minimization. 

One possible final case is when both frames in the pair 
are already included in a single sub-reconstruction. In this 
case, one may skip the pair, or process it to obtain additional 
points. A typical reconstruction procedure is depicted in 
Figure 3.1. The complete reconstruction algorithm is 
summarized below: 
 
Algorithm 2: Prioritized sequential 3D reconstruction  
Given the internal calibration parameters and the 
correspondence information for all frames as trajectories: 
1. Compute the initial 3D reconstruction 
2. Estimate the pose of each frame with respect to the first 

frame in the initial reconstruction by using the 3D-2D 
correspondences 

3. Compute the priority metric and order the pairs 
4. While the priority metric is above the threshold or all 

pairs are not processed 
a. If no member of the pair belongs to any of the 

existing sub-reconstructions, initialize a new sub-
reconstruction 

b. If one member of the pair belongs to an existing sub-
reconstruction, add the other frame to this sub-
reconstruction (Algorithm in [12]) 

c. If two members of the pair belong to the same sub-
reconstruction, process using the algorithm in [12]. 

d. If two members of the pair belong to different sub-
reconstructions, merge the sub-reconstructions 

5. If the number of remaining sub-reconstructions is larger 
than 1, then merge all of them into a global estimate. 

 
One last remaining issue is the choice of the pair for the 
initial reconstruction in Step 1. When choosing an initial 
frame pair, one should consider the following: 

• The estimated structure should be reliable, as 3D-2D 
matches are used to locate the other cameras. 

• The estimated structure should have as many matches 
as possible with the rest of the frames in the 
sequence, as the reliability of pose estimates depends 
on the number of matches. 

The key-frames detected in the tracking module satisfy the 
first criterion. As for the second criterion, intuitively, it is 
better to choose a pair that is close to other camera views. 
The locations of the key-frames can be utilized to obtain a 

(rather crude) estimate of the camera path, and this path 
estimate can be used as a guideline to choose the pair. Note 
that this is a computationally inexpensive procedure, as the 
required F-matrices are already computed in the 
segmentation module. 
 In a sequence with many covered and uncovered 
regions, it may not be possible to find an initial structure 
estimate satisfying the second criterion for the entire 
sequence. In that case, it is better to partition the sequence 
into subsequences, run separate reconstruction processes 
with different initial frame pairs, and finally, merge the 
computed structures using 3D-3D matches. Notice that this 
case can be detected and handled automatically by utilizing 
the camera path defined by the key-frames. 
 
4. Dense Depth Estimation 
 
The 3D structure of a scene can be represented as point 
samples, which are obtained with respect to a regular grid of 
the image plane of a camera view. If the projection 
parameters of the camera are known, the depth of each pixel 
uniquely defines the 3D position of the sampled point 
projected to the corresponding pixel, allowing the recovery 
of a dense 3D structure of the scene. Obviously, the use of 
multiple views improves the  accuracy of the estimate. 
Hence, in this study, some stereo matching approaches [14], 
are adapted to the multiple-view case, in order to estimate 
the dense depth map of a camera view. 
 
4.1. Searching the Depth Space 

In dense disparity estimation for the stereo case, pixel-to-
pixel matching on epipolar lines reduces the search space.  
However, for the multiple-view case, it is more practical to 
restrict the depth search space into discrete depth planes 
instead [22]. The depth planes are positioned parallel to the 
image plane of the reference camera view. Since a pixel in 
the reference plane lies on the corresponding epipolar lines 
in the other views, the depth planes determine the possible 
locations on these lines. In order to avoid any irregular 
sampling on the epipolar lines, which can cause loss of 
intensity information in matching, the depth planes are 
placed so that, on the epipolar line of the nearest camera,  
the distance between them is 1 pixel. 
 
4.2. Dense Depth Estimation on Markov Random 
Fields 

Finding a global solution for the dense depth estimation is an 
NP-hard problem [14], which needs some regularization 
tools to be utilized. Hence, in order to be able to take both 
the color consistency and the smooth variations of the depth 
(except across the object boundaries) into account, the dense 
depth field is modeled via a Markov Random Field (MRF).   



 

The MRF formulation transforms the dense depth 
estimation problem into finding the most probable 
configuration of the depth field in a Bayesian framework. 
The Bayesian structure of MRF provides a conditioning 
property across the neighboring pixels of the depth field, 
which can be used to enforce the smoothness constraint. The 
probability of depth assignment for each pixel is calculated 
by some cost function, which favors the color consistency 
among the matches and the smoothness in a certain 
neighborhood:  
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where f measures the deviation from the color consistency, 
and S from the smoothness constraint, taking the depth 
discontinuities into account.  � is a parameter to adjust the 
smoothing effect of the global MRF solution. In order to 
solve this minimization problem, many different algorithms 
are proposed such as iterated conditional modes (ICM), 
simulated annealing, Gibbs sampler [23]. In the following 
section the application of belief propagation (BP) [24] on 
dense depth estimation will be summarized. 
 
4.2.1. MRF solution with Belief Propagation 

In the belief propagation (BP) approach [24], the depth field 
is modeled as a Bayesian network. The desired solution is 
searched by iterative inferences of nodes (pixels) in this 
field. The resulting iterative inference is achieved via some 
messages sent by the nodes from their neighboring nodes. 
The messages are denoted as vectors with the same 
dimension of the number of probable depth values. The 
entries vary proportionally, depending on how a message 
sending node assumes that the receiver has a corresponding 
depth value. The application of BP on the stereo disparity 
problem can be found in [25]. 

The superiority of the BP method is its ability to 
consider all possible configurations by calculating the 
probability densities of all pixels. The BP algorithm solves 
the MAP estimate exactly on loopless networks [26]. 
However, BP is also known to be a good approximation for 
the loopy networks [17]. Although, the BP method has 
drawbacks in terms of computational cost and memory 
requirements, the results are much more promising and less 
sensitive to the initialization of the estimation algorithm.   
 
5. Simulation Results 
 
For evaluating the performance of the overall system, 
experiments are conducted on various video content. The 
results from “Palace”, a 200-frame sequence, and “Cliff”, a 
108-frame sequence, both captured from a typical TV 

broadcast and “TUB-Room”, a 240-frame synthetic 
sequence are presented for the individual modules. 

Figure 5.1 shows the segmentation (top) and sparse 
reconstruction results (bottom) of the “TUB-Room”-
sequence. Since the sequence contains IMOs, the 
segmentation module labels the trajectories according to 
their 3D motion (green crosses indicate the background, blue 
triangles and yellow squares indicate the IMOs, 
respectively).  

A sample reconstruction of the “Cliff” and the  
“Palace”-sequences are depicted in Figure 5.2 and Figure 
5.3, respectively. The performance of the sparse 
reconstruction module is illustrated in Table 5.1. The 
algorithm successfully recovers most of the structure points 
using only a fraction of the all available frame pairs. 
 
Table 5.1: Performance of the sparse reconstruction module  

 # frame pairs 
(used/total) 

# 3D points 
(recovered/total) 

Average 
reproj. 

Cliff 45 / 5778 5890 / 8212 0.95 

Palace 25 / 19900 2771 / 3546 0.90 

TUB-Room 17 / 28680 4716 / 6095 0.27 

 
 
The dense depth estimation is performed for both stereo 

and multiple cases in order to see the improvement by 
increasing the frame numbers (see Figure 5.4). It is clearly 
observed that the matching errors and the occluded regions 
decrease for the multiple-view case. In order to demonstrate 
the dense reconstruction results visually, an arbitrary view is 
generated by using a mesh rendering in Figure 5.5. 

 

Figure 5.1: Segmentation results of “TUB-Room” (top) and 
sparse reconstruction of the background and the IMOs (bottom) 



 

 

6. Conclusion 
 
In this paper, a complete system for 3D reconstruction of 
dynamic scenes from broadcast video data is presented. A 
four stage procedure is designed to realize this task. The 
system utilizes well-known and reliable algorithms, such as 
KLT and E-matrix based self-calibration methods, as well as 
some novel approaches in feature segmentation, sparse and 
dense reconstruction. The system is fully automatic, in the 
sense that it only requires a video sequence, as an input, and 
gives a dense depth map of the observed scene, as its output.  
 The experiments show that the segmentation and sparse 
reconstruction performance is quite remarkable. As for the 
dense reconstruction, the utilization of multiple frames for 
the dense depth estimation is shown to be an effective way 
to handle occlusions and improve the reconstruction quality. 
 While the experiments indicate that the system delivers 
promising results in terms of efficiency and performance, it 
is still susceptible to degenerate sequences for self-
calibration, and the lack, or degenerate configuration of 
features, especially in some indoor sequences and in the 
presence of small IMOs. Future works will focus to 
eliminate such problems by utilizing higher level geometric 
entities such as lines and planes. 
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