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ABSTRACT 

 
In this paper, an algorithm is proposed to solve the multi-frame 
structure from motion (MFSfM) problem for monocular video 
sequences with multiple rigid moving objects. The algorithm uses 
the epipolar criterion to segment feature trajectories belonging to 
the background scene and each of the independently moving 
objects. As a large baseline length is essential for the reliability of 
the epipolar geometry, the geometric robust information criterion 
is employed for key-frame selection within the sequences.  Once 
the features are segmented, corresponding objects are 
reconstructed individually using a sequential algorithm that is 
capable of prioritizing the frame pairs with respect to their 
reliability and information content. The experimental results on 
synthetic and real data demonstrate that our approach has the 
potential to effectively deal with the multi-body MFSfM problem. 

 

1. INTRODUCTION 
 
Structure from motion in static scenes is an extensively studied 
problem with some well established solutions [1]. However, these 
solutions are not capable of dealing with dynamic scenes with 
multiple moving objects, which are often encountered in practice. 
Hence, the intention of this study is to achieve both an accurate 
segmentation and reconstruction of the whole 3D scene including 
the dynamic elements.  

In the literature, analysis of video sequences of dynamic 
scenes falls under the category of the multi-body MFSfM problem, 
which has the following definition for this special case:   

Given a set of N features belonging to a background scene 
and K independently moving objects (IMOs), L views and the 
correspondence information, estimate the locations of the feature 
points in 3D world coordinates and the external calibration 
parameters. 

Once the feature set is segmented into partitions 
corresponding to the background and the individual objects, the 
problem can be decomposed into several static MFSfM problems. 
In this study, we will focus on the segmentation of multiple 
independently moving objects and on their reconstruction using a 
prioritized MFSfM approach. 

The segmentation techniques handling the multi-body MFSfM 
problem can be divided into three categories. Optical flow based 
methods [2][3] assume a scene composed of planes of varying 
depths. In this case, a simple clustering of the optical flow values is 
sufficient to achieve the desired segmentation. Statistical 
techniques belong to the second category. In [4], the sequential 
importance sampling is employed to estimate simultaneously the 
structure from motion for multiple independently moving objects. 
The empirical posterior distribution of object motion and feature 
separation parameters is approximated by weighted samples. 

 Finally, it is possible to exploit the constraints derived from 
the epipolar geometry and the rigid body motion assumptions. The 
most common approach is to estimate the individual F-matrices for 
each motion, and to use the epipolar constraint for the 
classification [5][6][7]. However, in [8], different geometric 
constraints are available, and both the partitions and the models for 
each partition are determined after utilizing the geometric robust 
information criterion. Yet another technique is presented in [9], 
which exploits the rank constraint on the shape interaction 
matrix. The basic approach is an extension of the factorization 
method for SfM. 

In this study, we use a geometric segmentation approach 
which is based on the epipolar constraint. The final 3D 
reconstruction step employs a two-frame triangulation. Both 
techniques achieve a better reliability for the large baseline case. 
However, a small baseline facilitates the solution of the 
correspondence problem. It is observed that the use of a tracker 
reduces the need for a compromise, providing a satisfactory 
solution to the correspondence problem, while providing a larger 
baseline. 

The organization of this paper is as follows: In the next section, 
the tracking and segmentation algorithm is outlined. Section 3 
describes the prioritized MFSfM approach. The experimental 
results are presented in Section 4. Finally, in Section 5, the paper is 
concluded by a discussion of the results and the future work. 

 
2. FEATURE TRACKING AND SEGMENTATION 

 
2.1. Feature Tracking 
As a large baseline is needed for both the segmentation and the 
reconstruction processes, a slightly modified version of the well 
known pyramidal Lucas-Kanade tracker is used to track features 



 

 

(corners) along a sequence of consecutive frames. The first 
modification is the padding of lost tracks, i.e., if features get lost 
during the tracking process, additional features are selected again 
with the Harris corner detector in the current frame. The second 
one is the key-frame selection to handle the baseline problem for 
the segmentation and reconstruction part. Since the baseline 
between consecutive frames is small, a 2D motion model H 
(homography) can be used to transfer features from one frame to 
their corresponding positions in a second frame. If the baseline 
increases during the tracking process and if the features belong to a 
3D scene structure, the projection error increases as well, i.e. the 
2D motion model must be upgraded to a 3D motion model F 
(epipolar geometry).   
 The Geometric Robust Information Criterion (GRIC) [10] is a 
robust model selection criterion to extract key-frames and is 
defined as: 
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as follows: d is the dimension of the selected motion model (H has 
the dimension two and F dimension three), r is the dimension of 
the data (i.e. four for two views), k is the number of  the estimated 
model parameters (seven for F and eight for H), n is the number of 
tracked features, σ is the standard deviation of the error on each 
coordinate and ei is the distance between a feature point transferred 
through H and the corresponding point in the target image or the 
Euclidian distance between the epipolar line of a feature point and 
its corresponding point in the target image (dependent on the 
selected model M): 
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The parameters λ1, λ2, and λ3 are tuning parameters with λ1=2, 
λ2=log(4n) and λ3=2 [10].  

Initializing the first frame of the sequence as key-frame and 
proceeding frame by frame, the next key-frame is selected if the 
GRIC value of the motion model F is below the GRIC value of H, 
i.e. a 2D motion model is no longer an accurate representation of 
the camera motion with respect to the 3D structure.  

Figure 1 illustrates schematically n frames of a video sequence 
with some key-frames, indicated as vertical red lines, and 5 
different kinds of feature trajectories. We use only the four upper 

kinds of trajectories for the segmentation and reconstruction, i.e., 
the ones that are visible in at least two consecutive key-frames. 

 
2.2. Segmentation 
Once the features are tracked throughout the sequence and the key-
frames are selected, trajectory segmentation is handled by 
geometric means. For each independent motion in the sequence, 
there exists a corresponding F-matrix, Fi, which fulfills the 
epipolar constraint 
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where x1 and x2 are corresponding points in two views. A 
RANSAC (RANdom Sample Consensus)-based F-matrix 
estimation algorithm identifies the feature pairs belonging to the 
dominant motion and labels the rest as outliers. If the same 
procedure is repeated with the outliers, some of the outliers should 
satisfy the epipolar constraint according to a new F-matrix, which 
corresponds to the motion of an IMO. This procedure is repeated 
as long as reliable F-matrices can be found for each IMO in the 
scene. Hence, upon successive iteration of the procedure for all 
key-frames, the feature trajectories can be classified, either as 
background or IMOs.  

In case, where one of the IMOs has a similar motion as the 
camera, some features may be classified as IMO features even 
when they belong to the background or another IMO. We handle 
this problem by considering the distance of each of the segmented 
features to their centroid. A feature is rejected if its distance is 
higher than a predefined threshold dependent on the standard 
deviation of the distances: 
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where c is the centroid of the data set, ν is a weighting factor and σ 
is the standard deviation.  

 Trajectories, which are labeled as outliers after RANSAC, re-
RANSAC and distance check are removed and not used in further 
computations. Finally, we employ guided matching [1] along the 
epipolar lines in the key-frames to increase the number of IMO 
features: First, a bounding box is placed around the features on the 
IMO in the previous key-frame and additional features are selected 

 

Figure 2: Trajectory segmentation (top) and guided matching 
(bottom) of the “Desk”-sequence 

Figure 1: Trajectory classification and key-frame selection 



 

 

with the Harris corner detector. These features are searched along 
their epipolar lines in the current key-frame, i.e. the search range is 
restricted to one dimension. Since the optical flow of the already 
segmented features is known, the search range on these lines can 
further be limited. A feature is considered as a match, if the 
normalized cross correlation (NCC) value is the highest among its 
neighbors and is above 0,8. The segmentation algorithm can be 
summarized as follows: 

 
Algorithm 1: Trajectory segmentation 
1. Compute the F-matrix corresponding to the first and the 

second key-frame by using a RANSAC-based procedure and 
label the inliers as background trajectories. 

2. Compute the F-matrix on the outliers of step 1 by using 
again RANSAC and label the inliers as IMO trajectories. 

3. Compute the centroid of the inliers of step 2 and check their 
distances. If the distance is higher than a threshold, reject the 
feature. 

4. Increase the number of features on the IMO in consecutive 
key-frames with guided-matching. 

5. Repeat step 2 to 4 as long as the F-matrix estimation is still 
reliable and most of the remaining features are spatially 
close. 

6. Proceed to the next key-frame. Estimate the F-matrix 
between the last and the current key-frame for each motion 
using the labeled trajectories and classify new trajectories 
using step 1 to 5. 

7. Repeat step 6 for all key-frames. 
 
Figure 2 gives an example of the background and IMO trajectory 
segmentation (frame 1 and 13 of the “Desk”-sequence captured in 
an office). The green crosses indicate the background trajectories 
and the blue squares belong to the IMO. The lower two images 
show a close up of the IMO with the guided matching results, i.e. 
red squares on the corresponding epipolar lines.  
 

3. PRIORITIZED RECONSTRUCTION 
 

3.1 Prioritization 
There are two motivations to study the prioritization problem. 
Firstly, one of the most significant advantages of the sequential 
methods is their ability to utilize the intermediate results from 
already processed frames to process the remaining ones. However, 
this provides the final reconstruction quality dependent on the 
processing order. Secondly, consecutive frames in a video 
sequence have a very narrow baseline, not allowing a reliable 
reconstruction. So, it is impossible to use the default (temporal) 
order. 

Once it is established that there is an ordering problem, the next 
step is to determine a favorable order with respect to a metric. To 
design a proper prioritization metric, the following criteria should 
be considered: 

 
•••• Fast convergence to a reliable estimate:  Since the quality of 
the subsequent reconstructions depend on the current 
(intermediate) structure estimate, errors in the first few pairs may 
cause the entire estimation procedure to collapse. 
•••• Fast recovery of the scene structure: The number of 
reconstructed 3-D points should be maximized, while processing a 
minimum number of frame pairs.  
 

A priority metric that takes the baseline distance and the number of 
feature matches into account should cover both of these criteria. 
Hence, the pairs that are to be used in the reconstruction are 
selected based on a weighted sum of the baseline distance and the 
number of matching features. Notice that another important 
reliability indicator, trajectory length, is not considered, as it 
sacrifices many sufficiently good, yet relatively short-lived features 
while trying to attain reliability, hence conflicts the second 
criterion. 
 
3.2 Reconstruction 
Prior to the description of the reconstruction algorithm, two 
definitions are necessary: 
 
Definition 1: A sub-estimate is a structure estimate obtained by the 
triangulation of the matched features in a single frame pair1.  
 
Definition 2: A sub-reconstruction is an intermediate structure 
estimate obtained form a collection of sub-estimates belonging to a 
subset of frames of the video sequence. Two distinct sub-
reconstructions cannot have any common frames. Global motion 
and structure estimate is computed by merging the sub-
reconstructions. 
 
 The core of the reconstruction algorithm is based on [11], and its 
implementation is detailed in [12]. The basic idea is, starting with 
an initial reconstruction by triangulation, and adding new frames 

                                                 
1 It should be stressed that, while in this study a 2-view 
reconstruction approach is preferred due to the availability of 
relatively simple, mature and reliable techniques, a sub-estimate 
can be constructed by any of the existing methods. 

Figure 3: Sequential pair processing scheme 



 

 

by first estimating their pose by 3D-2D matches, then computing 
the sub-estimate corresponding to the last and the current frame, 
again via triangulation and finally incorporating this sub-estimate 
into the reconstruction 

This algorithm is designed to process the frame pairs in a 
certain order (e.g, F1-F2, F2-F3, F3-F4 , …), and changing the order 
of frame pairs requires some modifications.   

Consider two pairs, Fm-Fn and Fp-Fq. There are two possible 
cases: They may have one common frame (e.g. n=q, then Fm-Fn, Fn-
Fp), in which case the sub-reconstruction can be computed using 
the original algorithm [11], or no common frames, which leads to 
two distinct sub-reconstructions, with a single sub-estimate each. 
Assume the latter occurs and let the sub-reconstructions be T1 and 
T2. Next, consider a third pair Fr-Fs with r=m and s=q, i.e. each 
frame belongs to separate sub-reconstructions. 

The fusion of T1 and T2 requires the estimation of a similarity 
transformation defining a mapping between the points of the sub-
reconstructions. The fundamentals of the estimation procedure are 
described in [1]. The basic idea is first to determine 3D-3D 
matches, then to use RANSAC to find a projective transformation 
that maps as many matches as possible, then to refine the estimate 
by using all available pairs and finally to further refine the estimate 
by a nonlinear minimization.  

One possible final case is when both frames in the pair are 
already included in a single sub-reconstruction. In this case, one 
may skip the pair, or process it to obtain additional points. A 
typical reconstruction procedure is depicted in Figure 3. The 
complete reconstruction algorithm is summarized below: 

 
Algorithm 2: Prioritized sequential 3D reconstruction  
Given the internal calibration parameters and the correspondence 
information for all frames as trajectories: 
1. Compute the initial reconstruction. 
2. Estimate the pose of each frame with respect to the first frame in 
the initial reconstruction by using the 3D-2D correspondences. 
3. Compute the priority metric and order the pairs. 
4. While the priority metric is above the threshold or all pairs are 
not processed: 

a. If no member of the pair belongs to any of the existing sub-
reconstructions, initialize a new sub-reconstruction. 

b. If one member of the pair belongs to an existing sub-
reconstruction, add the other frame to this sub-reconstruction 
(Algorithm in [11]). 

c. If two members of the pair belong to the same sub-
reconstruction, process using again the algorithm in [11]. 

d. If two members of the pair belong to different sub-
reconstructions, merge the sub-reconstructions. 

5. If the number of remaining sub-reconstructions is greater than 
one, merge them all into a global estimate. 
 
One last remaining issue is the choice of the pair for the initial 
reconstruction in Step 1. This pair should be both reliable and have 
as many common features as possible with the rest of the sequence, 
since the quality of the pose estimates depends on the number of 
matches. The key-frame pairs determined in the segmentation part 
are the obvious candidates for the initial frame pair. 
 

4. EXPERMENTAL RESULTS 
 
The segmentation algorithm is tested on both synthetic and real 
data. In Figure 2, the segmentation results of the “Desk”-sequence 
are presented as mentioned in Section 2. Figure 4 shows the 14 
key-frames, which are selected when the GRIC score falls below 
the zero-crossing, and the segmentation results of the synthetic 
sequence “TUB-Room” (240 frames) with two independently 
moving objects in the scene. The features on the two IMOs are 
indicated with blue triangles and yellow squares, respectively. The 
background features are labeled with green crosses.  

The reconstruction of the synthetic scene is presented in Figure 
5. The top row indicates the two IMOs. 331 features (left) and 113 
features (right) were used for the reconstruction, respectively. The 
reconstructed background is shown from two different viewpoints 
(middle and bottom row). Here, the number of reconstructed 
features is 5014, out of 6095. 

In Figure 6, the reconstruction results for “Palace”, a 208-
frame sequence without IMOs acquired from TV is depicted. This 
sequence was chosen to show the good performance of the 

Figure 4: Segmentation results, GRIC score and selected key-frames for the 240 frame sequence “TUB-Room” 



 

 

prioritized reconstruction approach for real data. Out of a total of 
3546 features, 2771 of them are successfully reconstructed. 

Due to sparse features on the walls, the reconstructed 
background of the "desk"-sequence is not shown. Moreover, the 
reconstruction of the IMO would fail because all features are 
located on a planar surface. 

5. CONCLUSION 
 

In this paper, a segmentation and reconstruction approach for 
dynamic scenes using video sequences is proposed. The algorithm 
utilizes the epipolar constraint to partition the feature set into 
independent motions. Since a large baseline is needed for a reliable 
F-matrix estimation, the geometric robust information criterion was 
employed for the key-frame selection. Once the features are 
segmented according to their motion, each partition is 
reconstructed separately by a sequential algorithm designed to 
efficiently process the large amount of information in the video 
sequence. The key to achieve this objective is processing the pairs 
in an order that allows the extraction of the structure reliably from 
a small number of pairs. The experiments indicate that for both the 
segmentation and the reconstruction the algorithm performs well, if 
enough features are present. However, in many real world 
sequences, the lack of features is likely to cause significant 
problems, especially for IMOs significantly smaller than the 
background.  

The proposed method is an important step towards robust 
extraction of 3D information from an arbitrary TV broadcast video. 
Future works will focus on dense matching techniques to get 
more completed 3D models of the scene. 
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Figure 5: 3D reconstreuction results of the IMOs (top row) and 
the backround for “TUB-Room” (2 different front views) 

Figure 6: Top row: First and last frames of “Palace”. Bottom 
row: Top and top-left views 


