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Abstract This paper presents a new approach to spa-
tial upsampling of digital video based on super-resolution
mosaics. First, we robustly generate a background mo-
saic of higher resolution than the original video. In order
to achieve that goal, we apply hierarchical global image
registration estimating an optimal parabolic parameter
set for each view of a scene shot. The final mosaic is
generated using statistical and projection grid distance
measures to avoid the impact of foreground objects and
to accomplish super-resolution respectively. Second, ar-
bitrarily moving foreground objects are segmented using
MRF-based change detection methods based on the cal-
culated mosaic. For the foreground objects an optical
flow field between adjacent frames is computed. Third,
we create new views with higher spatial resolution fus-
ing re-projected background content from the mosaic to-
gether with super-resolution foreground objects obtained
using optical flow field calculation. Results show that
this method is able to convert videos into higher spa-
tial resolution with very high objective and subjective
quality.

1 Introduction

With the propagation of many different video recording,
storage and display devices, video format conversion ap-
plications are attracting a great deal of attention. Since
consumer devices allow everyone to create visual content
in resolution of low level and medium level quality and
due to limited transmission bandwith and storage ca-
pacities, spatial-temporal video upsampling is becoming
more and more important.

Many methods for video format conversion have been
proposed and applied during the last years, especially
motion-compensation based methods and algorithms ap-
plied in the coding domain [5]. We present a super-
resolution based approach to convert videos into higher

spatial resolution. Video mosaicing hereby plays an im-
portant role summarizing the static background of a
scene, recorded with camera motion like zoom, pan, tilt,
and rotation. Because of the automatic elimination of
freely moving foreground objects, super-resolution mo-
saicing is a very effective tool to raise the background
resolution of such a scene [3]. Due to its signal enhance-
ment characteristic while using all available subsets of
image samples it has a high performance compared to
simple block motion or region motion based video for-
mat conversion methods [5]. A second advantage of video
mosaicing is the use for very efficient segmentation of
freely moving foreground objects. In order to segment
foreground objects, MRF-based change detection algo-
rithms comparing original and mosaic based re-projected
video scenes are applied [4]. Thus, a good side effect is
the creation of an object based scenario as it is proposed
in the MPEG-4 video coding standard [6].

For resolution enhancement of the arbitrarily moving
foreground objects which are not covered by the mosaic-
ing process an optical flow based super-resolution tech-
nique is applied. Since we are only interested in fore-
ground flow no dense flow calculation between adjacent
frames is necessary. This part is inspired by the work
of Baker and Kanade who researched super-resolution
optical flow very intensively [7].

Figure 1 shows the flowchart of our proposed method.
The next three sections describe the techniques for super-
resolution background construction, mosaic based object
segmentation, and foreground super-resolution computa-
tion respectively. In section 5 we show first results and
compare it to standard upsampling methods in an objec-
tive and subjective assessment. Section 6 concludes this
paper.

2 Super-resolution Background Construction

We apply hierarchical global motion estimation for the
registration of all frames of a video shot into the refer-
ence coordinate system. As underlying trans-formation
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Fig. 1 Flowchart of the proposed mosaic based video con-
version algorithm

model the parabolic transformation [2] is used. It is given
by

(x′, y′)T = T
(
k; (x, y)T

)
(1)

k = (a0, . . . , a5, b0, . . . , b5)T

x′ = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy

y′ = b0 + b1x + b2y + b3x
2 + b4y

2 + b5xy .

It can be shown that this 12-parameter model yields
much better registration results than the widely used
perspective model (homography) [2], especially in the
case of small translational camera motion. Since the model
is nonlinear, concatenation and inversion have to be es-
timated numerically.

The short term motion parameters are calculated ap-
plying Levenberg-Marquardt error minimization, whereas
the error function can be described by

E(t) =
1
2
· 1
NΩ

·
∑

(x,y)∈Ω

(It−1(x, y)− It(x′, y′))
2
. (2)

It−1 is the reference frame at time t − 1 and It is the
trans-formed and warped frame at time t. The energy
term is normalized by the number of overlapping pixels
NΩ in the reference frame domain Ω . For initialization
of the gradient based error minimization we calculate a
robust feature-based affine transformation parameter set
using a RANSAC - based technique. This monte-carlo-
like method prevents the registration algorithm from get-
ting stuck into local minima. Note that the affine trans-
formation parameter set is the linear part of Eq. (1).

For global alignment of every frame we finally ap-
ply direct parabolic parameter estimation between a pre-
liminary constructed mosaic using the first frame as ref-
erence coordinate system and the actual frame. In order

Fig. 2 Preliminary (left) and final (right) super-resolution
mosaic of sequence ”Charlottenburg”

to achieve this registration we apply again Levenberg-
Marquardt energy minimization. As initial starting value
the concatenation of the parabolic transformation pa-
rameter is used. This can be formulated in a recursive
manner:

T0→t = T0→t−1 ⊗ Tt−1→t. (3)

The preliminary mosaic is a simple summarization of
newly discovered image content (see Fig. 2).

The robustness of this method makes correct regis-
tration possible even if huge parts of the background are
covered by foreground objects.

2.1 Blending Technique

To achieve super-resolution we search the frame In with
the biggest zoom into the scene. Without loss of gener-
ality a scaled version of the first frame I0 can be used as
reference coordinate system. The scaling factor s should
be at least

s ≥ 2 · |an
1 bn

2 − an
2 bn

1 | . (4)

The term describes the determinant of the Jacobian of
the affine part of Transformation T0→n which is maximal
for In.

For the construction of the final mosaic a statisti-
cal analysis of all candidate pixels for a mosaic pixel
over time is performed. Here we assume that foreground
objects have enough motion that simple median filter-
ing would discover the static background. Farin [4] pro-
poses to conduct further correlation based analysis which
makes the process very complex. For our blending ap-
proach we follow the rule: A pixel candidate It(x′, y′)
belongs to the background only if

|It (T0→t(x, y)−m)| ≤ A ·median
∀τ

|Iτ (T0→τ (x, y))−m|

with m = median
∀ν

(Iν (T0→ν(x, y))) . (5)

Fig. 3 shows all possible pixel candidates for a line
of the super-resolution mosaic of sequence ”Stefan”. For
super-resolution blending, pixel interpolation which is
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Fig. 3 Image of mosaic pixel candidates over time t for the
line y = 90 of sequence ”Stefan” (see the foreground object)

Fig. 4 Original (upper left), mosaic re-projection (upper
right), luminance difference image (lower left), and generated
change detection mask (lower right) of frame 12 - sequence
”Stefan”

equivalent to low-pass filtering has to be avoided. There-
fore, out of the background pixel candidates the on is
chosen with the smallest distance dt to integer position
[2].

3 Mosaic based Foreground Segmentation

Re-projecting the content of the finally calculated mosaic
into the original frame coordinate systems generates very
accurate background models for every single image It of
a video shot. Thus, the problem of geometric adjustment
[1] for object segmentation based on change detection is
non-existent.

We consider significance based change detection for
a block of pixels centered at every image pixel of It.
Additionally, for exploitation of spatial and temporal
consistency of the computed change mask a simplified
Markov-Gibbs random field approach is applied. A pixel
is marked as unchanged if its conditional probability of
absolute block pixel difference exceeds a certain thresh-
old [5].

p (D(x)|H0) > τ (6)

D(x) is the mean pixel difference for a block Ωx and H0

is the null hypothesis indicating the fact that a pixel be-
longs to the image background. Since p (D(x)|H0) and
the alternative conditional pdf p (D(x)|H1) can be mod-
eled by Gaussian random variables we end up with sim-
ple thresholding the block pixel differences.

Fig. 5 Principle of flow based super-resolution foreground
construction using two adjacent frames: (a) image interpo-
lation, (b) optical flow calculation, (c) image warping, (d)
robust blending

For incorporating spatial and temporal consistency
we use the previously generated change mask as state
map. Since the probability of a pixel to be marked as
changed raises with the number of marked neighboring
pixels in space and time, threshold is decreased linearly
depending on the number of neighboring change pixels
in the temporal previous change mask.

Figure 4 shows exemplarily the result of the segmen-
tation method for frame 12 of sequence ”stefan”. Note,
that also background regions are detected because of in-
dependently moving background objects.

4 Object Super-Resolution using Optical Flow

Foreground objects are not covered by our robust mosaic
super-resolution process. Since it is very desirable to en-
hance the resolution of the foreground objects we apply
an optical flow based super-resolution method proposed
in [7]. The authors suggest a five step algorithm which’s
principle is shown in Fig. 5. Using the four neighboring
frames of the actual frame In we compute the optical
flow between the upscaled frames and apply a robust
blending process to the warped pictures.

As optical flow estimation a hierarchical Lucas-Kanade
algorithm is used [7] which is less robust for whole pic-
tures but good enough for foreground objects where only
small occlusion occurs. Any other flow algorithm could
be used instead [8]. Results show that especially for fore-
ground objects this process yields in more detailed pic-
tures than with any common interpolation method (see
Fig. 6).

5 Experimental Results

For the demonstration of the accuracy of our proposed
method we compared its results applied on lowpass fil-
tered and downsampled scenes with the original sequences.
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Fig. 6 Frame 3 of sequence ”Stefan” after spline interpola-
tion (left) and super-resolution optical flow (right); see slight
differences for script region and face region

Fig. 7 Results after super-resolution format conversion
for first 100 frames of sequence ”Stefan”, downsampled
(176x120)

Figure 7 shows the calculated PSNR values for sequence
”Stefan” for three different spatial upscaling approaches
over 100 frames. The first is a simple interpolation ap-
proach using B-splines, known to be a precise type of im-
age interpolation. Second we show the results for super-
resolution based on optical flow super-resolution only
(see section 4). Since the applied method for optical flow
calculation is not reliable for occlusion regions the PSNR
curve is only slightly improved in comparison to the B-
spline approach. The third result is obtained applying
our proposed method. The gain in terms of PSNR is
up to 0.6dB. The mean values over 100 frames for the
B-spline, optical flow based, and the proposed method
average to 23.22dB, 23.33dB, and 23.56dB respectively.

To strengthen our results we applied the method for
incorrectly subsampled scenes having spatial aliasing.
Here, the improvement can be mainly assessed subjec-
tively because the flickering caused by aliasing cannot
be measured in terms of PSNR values. See Figure 8 for
correct restoration of horizontal lines. The mosaic based
multi sample reconstruction is very helpful to overcome
the aliasing effect.

6 Summary and Conclusion

We presented a new approach for spatial up-conversion
of video scenes based on super-resolution mosaicing. Since

Fig. 8 Results: frame 79 of sequence ”stefan”- B-spline inter-
polation (left), proposed method (right) - see aliasing effects
for the ground line in the left image

the mosaic process can only be applied for rigid back-
ground objects a optical flow super-resolution method
for independently moving foreground objects is used.
Main advantage of this approach is the simultaneous
generation of meaningful objects due to the mosaic based
object segmentation. Results show that for main parts
of a video sequence we exceed commonly used upscal-
ing methods, such as complex interpolation approaches.
Additionally subjective assessment shows that we can
mainly overcome the effects of spatial aliasing. Further
work includes the incorporation of more reliable flow cal-
culation algorithms.
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