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ABSTRACT

Microphone arrays are suitable for a large range of ap-
plications. Two important applications are speaker locali-
zation and speech enhancement. For both of these the trans-
fer functions from one microphone to the other microphones
are needed to form potential algorithms for these applica-
tions. In this paper we present a new transfer function esti-
mator optimized for speech sources in a noisy environment.
To achieve this, we integrate a new covariance matrix esti-
mation algorithm for the noisy speech as well as for the
adaptive and correlated noise signals as received by the mi-
crophones. Results indicate that our algorithm outperforms
other state-of-the-art algorithms.

1. INTRODUCTION

System identifications is a very useful tool for signal proces-
sing tasks. In particular, in speech signal processing system
identification is needed for various applications. Two im-
portant applications are beamforming algorithms [1] where
the system identification is used to form the blocking ma-
trix in adaptive beamformer, and acoustic source localizati-
on where system identification is used to determine the time
difference of arrival (TDOA) as a prior step to the localiza-
tion [2],[3].

The traditional method for estimating a transfer system
is the cross-correlation method. This method has the dis-
advantage that it is biased in the presence of noise. Wein-
stein and Shalvi proposed in [4] an unbiased estimator of
the transfer function by assuming non-stationarity of the de-
sired signal whereas the cross-correlation between the addi-
tive interfering signals at the sensors has to be stationary.
Then they divide the observed time interval into subinter-
vals and analyze in each subinterval the cross power spectral
density (PSD). Hence, they get an equation for each subin-
terval leading to an overdetermined set of linear equations.
With a weighted least-squares (WLS) approach, the error
variance is minimized. Unless the problem of the biased
estimator was solved the error variance of the estimator is

increased because of the reduced number of samples used
for the estimation of the cross PSD.

Cohen extended the algorithm from Weinstein and Shal-
vi and adapted the algorithm to noisy speech signals [5].
Therefore, he used a single channel noise reduction algo-
rithm [6]. He reduces the error variance of the cross PSD
estimation with a recursive smoothing algorithm. This in-
creases the correlation between the cross PSD estimation
at adjacent subintervals and the obtained equations will be
correlated. In this paper we introduce a new estimation algo-
rithm for the covariance matrices optimized for noisy speech
signals. Our new estimation algorithm derives an estimation
of the covariance matrix of the noisy speech signals as well
as for the covariance matrix of the additive noise. We incor-
porate all the informations comprised in these covariance
matrices to improve the estimation of an unbiased transfer
function.

2. PROBLEM FORMULATION

Consider a two-microphone system with:

x1(t) = h1(t) ∗ s(t) + n1(t) (1)

x2(t) = h2(t) ∗ s(t) + n2(t)

wherex1(t) andx2(t) represent the microphone signals.
s(t) is the desired speech signal.h1(t) andh2(t) are mode-
ling the impulse response functions from a point source (in
this case a speaker) to the microphone 1 and 2, respectively.
The additive noise signals in the microphone signalsn1(t)
and n2(t) comprise a correlated part and an uncorrelated
part:

n1(t) = hn1
(t) ∗ n(t) + nd1

(t) (2)

n2(t) = hn2
(t) ∗ n(t) + nd2

(t)

wheren(t) is a directed noise source with the transfer
functions to the microphoneshn1

(t) andhn2
(t). The opera-

tion ∗ denotes the convolution. The partsnd1
(t) andnd1

(t)



are uncorrelated diffuse noise. The speech sources(t) is as-
sumed to be uncorrelated with the additive noise partsn1(t)
andn2(t).

2.1. Relative transfer function system identification

In the relative transfer function system identification one
microphone signal is used as a reference signal and is sub-
tracted from the filtered second microphone signal. Figure
1 shows such a system wherex2(t) is used as the reference
signal.
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Fig. 1. Reference based system identification

The aim of the system identification (calculation ofw(t))
is that the error signal

e(t) = w(t) ∗ x1(t) − x2(t) (3)

does not contain any part of the speech source signal
s(t). Rewriting equation 3 using equation 1 yields:

e(t) =
(

w(t)∗h1(t)−h2(t)
)

∗ s(t)+w(t)∗n1(t)−n2(t)

(4)
To eliminate the speech signals(t) in e(t) the system

identification has to estimate

w(t) = h2(t) ∗ h1(t)
−1 . (5)

Thus,w(t) is the transfer function from the first microphone
to the second microphone in the time domain.

Transforming equation 5 into the frequency domain we
obtain the relative transfer function (RTF):

W (ω) =
H2(ω)

H1(ω)
. (6)

The simplest algorithm to identify the RTF is the so cal-
led cross-correlation method:

ŴCC(ω) =
φx1x2

(ω)

φx1x1
(ω)

(7)

in which φx1x2
(ω) = E{X∗

1 (ω)X2(ω)} is the cross
power spectral density (PSD) of the two microphone signals
andφx1x1

(ω) = E{|X1(ω)|2} is the auto power spectral

density of the first microphone signal.X∗

1 (ω) is the com-
plex conjugate ofX1(ω). With the above made assumpti-
ons, cross PSD and auto PSD become (for simplicity the
parameterω is omitted in the following):

φx1x2
= H∗

1H2φss + φn1n2
(8)

= H∗

1H2φss + H∗

n1
Hn2

φnn

φx1x1
= |H1|

2φss + φn1n1
(9)

= |H1|
2φss + |Hn1

|2φnn + φnd1
nd1

Equation 8 and 9 show that̂WCC(ω) is a biased esti-
mator ofW in a noisy environment. The cross correlation
method is still biased even if only diffuse noise (nd1

and
nd2

) is present. For an unbiased estimator ofW (ω) it is ne-
cessary to estimateφx1x2

, φx1x1
, φn1n2

, andφn1n1
. Then

an unbiased estimator is given by:

Ŵ 1
unbiased =

φx1x2
− φn1n2

φx1x1
− φn1n1

(10)

another unbiased estimation ofW is:

Ŵ 2
unbiased =

φx2x2
− φn2n2

φx2x1
− φn2n1

(11)

where the estimations ofφx2x2
andφn2n2

are also used.
The final unbiased estimation is then mean of both:

Ŵunbiased = (f1Ŵ 1
unbiased + f2Ŵ 2

unbiased) (12)

wheref1 andf2 are weighting functions depending on
the SNR. They are defined as follows:

f i(SNR) =

φxixi

φnini

φx1x1

φn1n1

+
φx2x2

φn2n2

(13)

for i = 1, 2.
The covariance matrix of the noisy speech signals and

covariance matrix of the noise signal contain all desired
cross and auto power spectra.

Cx1x2
=

(

φx1x1
φx1x2

φx2x1
φx2x2

)

(14)

Cn1n2
=

(

φn1n1
φn1n2

φn2n1
φn2n2

)

(15)



3. IMPLEMENTATION

In our implementation the system identification is carried
out in the frequency domain. Therefore, we use the short-
time Fourier Transformation (STFT) where the parameters
k andl will denote the frequency and time block index, re-
spectively.

As we have seen in the previous section we need to esti-
mate the covariance matrix of the noisy speech signals and
the covariance matrix of the pure noise signals. The esti-
mation is carried out with a recursive smoothing. IfX(k, l)
andY (k, l) are the short-time spectrum of the signalsx(n)
andy(n) then smoothing of the covariance matrix can be
expressed as

CXY(k, l) = αCXY(k, l− 1)+(1−α)Cinst
XY (k, l) (16)

whereα is a smoothing factor and

C
inst
XY (k, l) =

(

X∗(k, l)
Y ∗(k, l)

)

(

X(k, l) Y (k, l)
)

is the instan-

taneous estimation of the covariance matrix.
For the traditional algorithms the smoothing factor is

kept constantα = 0.95.
In our scenario we deal with speech signals corrupted

with background noise. Therefore, we have developed a new
optimized covariance matrix estimation for the noisy speech
and for the background noise based on a recursive smoo-
thing. In contrast to the previous estimation, where the smoo-
thing factor remains constant, the smoothing factor beco-
mes time and frequency dependent, i. e.α(k, l). Depending
on the actual signal-to-noise ratioSNR(k, l) the smoothing
factor for the noisy speech can be defined as follows:

αOpt(k, l) = (17)






1 if SNR(k, l) ≤ SNRmin

αmin if SNR(k, l) ≥ SNRmax

1 − (1 − αmin)SNR(k,l)−SNRmin

SNRmax−SNRmin

otherwise

In [7] an estimator of the a priori SNR was derived which
is used here. Finally, the optimized estimation of the noisy
speech covariance matrix is given by:

C
Opt
x1x2

(k, l) = αOpt(k, l)COpt
x1x2

(k, l − 1) (18)

+(1 − αOpt(k, l))Cinst
x1x2

(k, l)

If SNR(k, l) is low the adaptation of the covariance ma-
trix is stopped because the smoothing factorα(k, l) is set
to one. On the other hand, the instantaneous estimation of
covariance matrixCinst

x1x2
(k, l) gets a high weight because

α(k, l) is set small. The estimation of theSNR(k, l) is co-
ming from a one channel noise reduction system.

The estimation of the noise covariance matrix is also
controlled by the smoothing factor. The speech presence
probability p(k, l) defined in [8] controls the update equa-
tion for the noise covariance matrix estimation. The algo-
rithm [8] is extended with the optimally smoothed power
spectral density estimation according to [9]. The update ru-
le for the noise covariance matrix estimation is proposed by:

Cn1n2
(k, l) = αN (k, l)Cn1n2

(k, l − 1) (19)

+(1 − αN (k, l))Cinst
x1x2

(k, l)

with

αN (k, l) = p(k, l)(1 − αmin) + αmin . (20)

Figure 2 illustrates the performance of the used noise
tracking algorithm. The noisy signal is a speech signal with
additive cockpit noise. The SNR of the noisy signal is 1 dB.
The thine line represents the optimally smoothed PSD of the
noisy speech [9] and the bold line shows the tracking of the
noise PSD.
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Fig. 2. Non-stationary noise tracking example for the fre-
quency bink = 15. Thin line: optimally smoothed PSD of
noisy signal; bold line: estimated noise PSD

4. EXPERIMENTAL SETUP AND RESULTS

For the evaluation of the different system identification al-
gorithms we generated two microphone signals with the fol-
lowing parameters. The different impulse response answers
are given by discrete sequences:

h1(n) = [1, 0.4, 0.1,−0.3, 0.2,−0.1, 0, 0]
h2(n) = [0, 1, 0.5,−0.3, 0, 0.2, 0, 0.1]
hn1

(n) = [0, 1, 0, 0.5, 0.3, 0.1,−0.2]
hn2

(n) = [1, 0, 0.5, 0.1, 0,−0.2, 0]
In figure 3 an example of a reverberated clean speech

signal (upper signal waveform) and the noisy speech signal



(lower signal waveform) with a SNR of -2,54 dB are plotted.
The additive noise is a stationary white gaussian noise.
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Fig. 3. Signal waveforms, upper plot: reverberated clean
speech, lower plot: noisy speech signal

As an objective measure we use the signal blocking fac-
tor (SBF) defined in [5] as:

SBF= 10log10

∑

n(h1(n) ∗ s(n))2
∑

n e(n)2
(21)

∑

n(h1(n) ∗ s(n))2 is the energy of the speech signal con-
tained in the first microphone signal.

This measure can be pulled up to evaluate the usability
of the algorithm for a blocking matrix in an adaptive beam-
former.

SBF [dB] stationary non-stationary
global SNR -0.52 dB 8.97 dB 0.96 dB 8.92 dB
WCC -0.12 -5.14 -1.71 -7.69
WCohen -6.47 -9.63 -8.30 -16.45
Wproposed1 -10.21 -17.77 -15.11 -22.91
Wproposed2 -12.54 -18.84 -17.42 -25.01

Table 1. Comparison of the different system identification
algorithms with respect to their SBF performance.WCC is
the traditional biased cross correlation method,WCohen re-
presents the adaptive online algorithm from [5],Wproposed1

uses the proposed covariance matrix estimation from equa-
tion 18, andWproposed2 is the implementation of unbiased
estimator from equation 12

Table 1 summarizes the results of the performance eva-
luation of four different system identification algorithmswith
respect to their SBF. The tested algorithms are the biased
cross correlation method with a constant smoothing factor
(WCC ), the adaptive online algorithm proposed by Cohen

in [5], the cross correlation method with the proposed cova-
riance matrix estimation optimized for noisy speech signals,
and the proposed algorithm implementing equation 12. The
parameterαmin is set to 0.95 and the step sizeµ in the ad-
aptive online algorithm is chosen to 0.01.

The algorithms are tested with two different noise types,
stationary white gaussian and non-stationary cockpit noise.
For both noise types two different noise levels are created.
The global SNR is the mean SNR between the first and the
second microphone signal. In figure 4 the resulting error si-
gnals from the different system identification algorithms are
visualized. The generated microphone signals are corrupted
with the non-stationary noise at a level of 1 dB. The final
estimation of the RTF is used for the whole sequence. The
adaption process is not considered in the error signals.
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Fig. 4. First plot: reverberated clean signal, second plot:
error signal from system identification algorithm after [5],
third plot: error signal from with system identification al-
gorith optimized covariance matrix estimation, fourth plot:
error signal from unbiased system identification algorithm

5. CONCLUSIONS

In this paper we have introduced a new relative transfer
function estimation optimized for noisy speech signals fora
two-microphone system. Components from a noise reducti-
on system are used to design an covariance matrix estima-
tion algorithm. It has been shown that this algorithm out-
performs other state-of-the-art algorithms. Changes in the
transfer function resulting from a speaker movement can be
handled since the update rule for the covariance is adap-
tive. This algorithm is able to cope with competing noise
sources. If there is a competing speaker this algorithm will
fail because it relies on the assumption to differentiate bet-
ween noise and speech. In this case a multiple input multiple
output (MIMO) system has to be considered.



For future work, we plan to extend the proposed algo-
rithm to a multi-channel system. This will increase the de-
gree of liberty for the identification process. Hence, we ex-
pect a better performance in minimizing the final error si-
gnal of the system.
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