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ABSTRACT
We report on a fast algorithm for the generation of cylindri-
cal panoramic views from hand-held video sequences. Due
to its high processing speed the algorithm is suited for hard-
ware implementation into next generation video- and photo
cameras. This enables the user to easily create immersive
views from simple pan shots of variable quality. The indi-
vidual processing steps within the algorithm are described
in detail. Final results of the video to panorama conversion
process along with an an outlook on how to further improve
the method when implemented in consumer grade video- and
photo cameras are given at the end of this paper.

1. INTRODUCTION
When attempting to capture scenes with an extremely

wide field of view, such as inside stadiums or on top of a
mountain, one encounters the task of creating panoramic
views. A standard image captures a field of view of roughly
60 ◦, the use of extreme wide angle lenses can give fields
of view of up to 180 ◦. Our algorithm however can easily
yield full 360 ◦ panoramas, thereby creating an immersive
visual of the captured scenery. The advances in processing
capabilities of mobile devices now allow the computation of
panoramic views within the device. In general, the result-
ing image quality is of course limited by the captured video
resolution, and thus, unable to compete with offline compu-
tation of panoramic views made from still images. However,
using video sequences enables the use of feature tracking
for finding point correspondences of adjacent frames. This
approach proves to be much faster than conventional full
search methods that have to be applied for finding point cor-
respondences in arbitrary images. We tested the algorithm
with a dataset containing over 30 different video sequences
comprised of both pan shots and free hand videos. Video
resolution ranges from standard VGA to 720p. It has to
be mentioned that the algorithm runs fully automatically
requiring no user defined parameters for the computation.
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1.1 System Overview
The algorithm is comprised of five functional blocks, which

are illustrated below in figure 1. These block are described
in more detail later in this paper.

Figure 1: Schematic block diagram illustrating the
functional overview of the presented system.

1.2 Related Work
A number of previous publications deal with the general

problem of stitching together several still images in order
to form a panoramic view [12], [16], [13], [15]. There ex-
ist however only few publications that focus on the com-
putation of panoramic views directly from videos [14]. An
impressive example is given by [2] in which the dynamic na-
ture of video is integrated into the final panorama. While
the use of dynamic video elements within a panoramic view
further enhances the immersive viewing experience, the pro-
cess requires manual user input and is therefore not suitable
for the fully automatic implementation into consumer grade
cameras.

2. THE WORKING PRINCIPLE
As described above the algorithm aims at combining the

individual frames of a given video sequence in a way that re-
sults in a high quality panoramic view. In order to achieve
this in minimal time the following steps are taken in the or-
der given here. The implementation of this work was done in
C++, extensively utilizing the popular OpenCV [4] library.

2.1 Feature Tracking
In order to find a hopefully large number of point corre-

spondences between two neighboring frames the Kanade-
Lucas-Tomasi (KLT) feature tracker (FT) [3] is utilized.
Given a small interframe displacement with respect to the
optical flow of adjacent frames the FT is able to produce
satisfying results which predicate the horizontal and verti-
cal displacement of a small 5 × 5 pixel window I around
a given feature point, thus minimizing the sum of squared



Figure 2: The above image shows detected point
correspondences within one of two adjacent frames.
Correct matches are marked in green, whereas out-
liers are shown in red. The yellow trajectory indi-
cates the optical flow from the previous frame to the
current one.

differences:

ε =
∑
x

[I(W(x; p))− T (x)]2 , (1)

where W denotes a warping function, x are the pixels in ho-
mogenic coordinates, p is the set of parameters constituting
the actual warp, and T is a template window within the next
frame. The iterative search algorithm is strongly related to
a gradient descent search and well described in [3].

The answer to which features to select is given by Shi and
Tomasi [11]. They derive the feature selection process from
the actual task of feature tracking and, in a nutshell, con-
clude that features in forms of corners and single points make
good features to track. Both of these functions are built into
the OpenCV library and are therefore readily available with-
out an otherwise necessary need to re-implement.

The tracking algorithm, however, sometimes gives erro-
neous results, namely wrong point correspondences or out-
liers that have been marked in red in figure 2. This is fatal
for the algorithm’s next processing step and has to be com-
pensated for by removing outliers from the feature set with
RANSAC1 [6]. Implementation of the latter corresponds
with the description in [7].

2.2 Creating Cylindrical Subpanoramas
With the optical flow between the two frames a homogra-

phy matrix H can be computed by applying a singular value
decomposition to the set of correct point correspondences as
described in [7] and [10]. H is then applied to warp each
pixel x̃ of successive frames i onto the initial frame 1.

x̃1 = H1ix̃i. (2)

1RANSAC: Random Sample Consensus

2.2.1 Perspective Projection
Up to this point the algorithm is able to calculate simple

planar panoramic views which can have a field of view no
more than 180 ◦. As mentioned above outliers in the calcu-
lated optical flow can have a dramatic effect on the image
quality of the panoramic views due to malformed homogra-
phy matrices. This effect is illustrated in figure 3. Keeping
in mind that not all tracked features within the inliner set
are perfect, further attention must be payed when warping
multiple frames onto a single planar panoramic view. Each
successive homography matrix is partially calculated from
previous homography matrices such that the N -th matrix
warping onto the first frame is given by:

H1,N = H1,N−1 ·HN−1,N . (3)

Since it is, due to imperfect point correspondences, pos-
sible to have error propagation from matrix to matrix we
introduce keyframe panoramas after a certain horizontal im-
age size, relative to the video frame size we are creating the
panoramic view from, has been reached. This size threshold
limits the negative effects on error propagation within the
planar panoramic views and also prevents singularities at the
image boundaries, which occur reaching a camera rotation
of ±90 ◦ in the horizontal direction.

(a) without RANSAC

(b) with RANSAC

Figure 3: The figure above shows two partial
panoramic views of the test sequence Manchuria.
Image (a) was computed neglecting the effect of out-
liers. Image (b) shows the partial panoramic view
after outliers have been removed from the corre-
spondence set.



2.2.2 Focal Length Estimation
The problem of preventing singularities in size when gen-

erating planar panoramic views will be addressed in the
cylindrical projection stage of the algorithm. Prior to com-
puting the cylindrical projection it is necessary to compute
the focal length of the video sequence in units of pixels.
The focal length will represent the cylinder’s radius and is
therefore a crucial parameter for the entire process. Two
approaches for solving this task apply: First, when handling
video sequences with an arbitrary camera path standard
camera calibration or tracking techniques can be utilized.
Second, when dealing with a pan shot, i.e. a video where
the camera center is static through the entire sequence, we
can use the pre-computed homography matrices to solve for
the focal length as described in [8] and [16]. A homography
between two frames can be separated into a linear combina-
tion of the intrinsic camera matrices of both views Ki and
Kj and a rotation matrix R. When assuming a constant
focal length, which is the case in the examples presented in
this paper, we can write this as:

Ki = Kj = K =

f 0 0
0 f 0
0 0 1

 . (4)

Except for a scaling factor the corresponding homography
matrix Hij can therefore be written as:

Hij = KRijK
−1 =

f 0 0
0 f 0
0 0 1

 ·Rij ·

 1
f

0 0

0 1
f

0

0 0 1

 . (5)

Considering the matrix’s individual parameters and sim-
plifying our notation to Rij = R, with

R =

r00 r01 r02
r10 r11 r12
r20 r21 r22

 (6)

and Hij = H, we can write the homography as:

H =

h00 h01 h02

h10 h11 h12

h20 h21 h22

 ∼
 r00 r01 f · r02
r10 r11 f · r12
r20/f r21/f r22

 . (7)

Since the rows and columns of R have to be orthogonal to
one another, we can set up the following system of equations:

0 = h00h10 + h01h11 + h02h12/f
2

= h00h20f + h01h21f + h02h22/f

= h10h20f + h11h21f + h12h22/f

= h00h01 + h10h11 + h20h21f
2

= h00h02/f + h10h12/f + h20h22f

= h01h02/f + h11h12/f + h21h22f

. (8)

In addition to this the first two columns and the first two
rows of R have identical norms, which results in the second
system of equations:

h2
00 + h2

01 + h2
02/f

2 = h2
10 + h2

11 + h2
12/f

2

= h2
20f

2 + h2
21f

2 + h2
22

h2
00 + h2

10 + h2
20/f

2 = h2
01 + h2

11 + h2
21f

2

= h2
02/f

2 + h2
12/f

2 + h2
22

(9)

Solving both systems for the focal length f yields the
cylinder’s radius in units of pixels, which will be needed
in the following processing step.

2.2.3 Cylindrical Projection
The various planar panoramic views can now be projected

onto a cylinder, where the transformation from Cartesian
image coordinates x = [x, y]T to cylindrical image coordi-

nates xzyl = [θ, h]T is given as follows:
First the planar image pixels have to be mapped into the

3D space in front of a cylinder:

x̂ŷ
ẑ

 =
1√

(x− xd)2 + f2

x− xd

y − yd

f

 , (10)

where xd is half of the video frame width and yd is half of
the video frame height in pixels. The focal length is again
given by f . The cylinder coordinates θ and h can then be
calculated with:

[
θ
h

]
=

[
arctan (x̂/ẑ)

ŷ

]
(11)

(a) f = 500 (b) f = 2000 (c) f = 8000

Figure 4: Image distortion with respect to the fo-
cal length f , increased by a factor of four in each
step. As can be observed a value of f = 500 strongly
distorts the given image and renders it unuseful for
generating a full 360 ◦ panorama.

As a third step we re-project the cylinder’s surface onto a
plane with:

[
xzyl

yzyl

]
=

[
f · θ + xd

f · h+ yd

]
. (12)

Figure 4 shows the resulting image deformations with re-
spect to the focal length. A transformation with f = ∞
would leave the input image, a partial planar panoramic
view, unchanged.

2.3 Full cylindrical panorama generation
Once multiple cylindrical panoramic views have been com-

puted the algorithm will attempt to stitch all of them to-
gether to form a preliminary cylindrical panoramic view.
In theory, having computed the correct focal length of the
camera with which the underlying video sequence had been



recorded, the individual cylindrical panoramic views will
easily align. This is because image alignment on a cylindrical
surface becomes a pure translative problem [12]. A rotation
of the camera is a translation of the cylindrical panorama. If
the focal length has been computed correctly. Since this can
not be always assumed the algorithm has to compensate in a
way that preserves high quality partial panoramic views that
have been mapped onto a cylindrical surface with correct fo-
cal length and at the same time minimizing computational
cost and maximizing subjective image quality when partial
panoramic views generated from substantially wrong focal
lengths are stitched together.

2.3.1 Alignment of partial panoramic views
A rather large 200 × 150 pixel template is taken from a

given partial cylindrical panorama, which we from now on
refer to as tile, and compared to a window of the same size
within the subsequent tile. A similar approach is for in-
stance taken in [18]. To get a rough initial estimate for the
translation vector between the two windows, we remember
the position of the center of the last frame n that was added
to the preceding tile. In the current tile we already know
where the center of the next frame n + 1 will be, since it
forms the seed image for the panoramic view to grow on.
The translation between the two points is our initial guess
which is then forwarded to a gradient descent search that
tries to iteratively match the template with the current tile.
As mentioned above, given a perfect focal length, this task
is a solely translative problem and will converge quickly. If
however cylindrical distortions, due to an erroneously com-
puted focal length, come into play, alignment will not nec-
essarily converge assuming a pure translation of the search
window. For this reason an iteratively updated window warp
matrix W has to contain translative components tx and ty
in the x- and y-direction, respectively as well as a rotation
component wz. W can then be written as:

W =

 1 wz tx
−wz 1 ty

0 0 1

 . (13)

In case the gradient descent search gets stuck in a local
minimum, thereby making it in some cases impossible to
converge, we limit the maximum number of iterations to
1000. The preliminary results after this processing step can
be observed in figure 6.

2.3.2 Blending with Multi-Resolution Splines
The basic principle behind this technique is to subdivide

the images which are to be blended together into several
subbands with respect to the image’s frequency components.
Low frequencies, such as the mean gray value, will receive a
wide transition zone throughout both images, so that they
can be blended smoothly. High frequencies, such as small
rocks, along the principle transition line will receive a narrow
transition zone, thereby preserving detail from both images.
The implementation presented in this paper is largely based
on [5], where image blending with multi-resolution splines
was first described. In order to find a non necessarily vertical
transition line, we apply a technique from the open source
project enblend [1].

First the required target space for the resulting image af-
ter the blending process is calculated. Then each input tile
is warped into this target space with W. We refer to the

Figure 5: Combination of subpanoramas to form the
resulting panorama showing a group of penguins in
Antarctica. This sequence is taken from the docu-
mentary BBC: Planet Earth – Ice Worlds

target space as overlay. In order to create a pyramid con-
taining non-overlapping subbands from the complete image
spectrum, we first make sure the overlay image precondition,
where l is the overlay’s length in x- and y-direction holds:

(
l

2N−1

)
mod 2 = 0 ∀x ∈ [1, . . . ,M ] . (14)

The total number of subbands is given by N − 1, M de-
scribes the maximum input size in pixels. The images will
both be put into the target overlay image, where zero color
values are appended around them for the next processing
step. This step is the creation of subbands. This is done
with image pyramids, which are for instance described in
[17]. Four Gaussian pyramids GA, GB, GR and GRN are
created by subsampling the input images by a factor of two
and applying the convolution kernel Γ in eq. 16, with

Γ =


0.0025 0.0125 0.0200 0.0125 0.0025
0.0125 0.0625 0.1000 0.0625 0.0125
0.0200 0.1000 0.1600 0.1000 0.0200
0.0125 0.0625 0.1000 0.0625 0.0125
0.0025 0.0125 0.0200 0.0125 0.0025

 . (15)

The Gaussian pyramid of the first input image is given by
GA, the Gaussian pyramid of the second input image is given
by GB. GR and GRN represent the Gaussian pyramids of
the non-inverted and inverted binary blending mask, respec-
tively. Each layer of the pyramids is created according to
eq. 16, as described above, by subsampling and convolving
the layer with Γ. Formally this can be described as follows:

Gl(i, j) =
∑ 5∑

m,n=1

Γ(m,n)Gl−1(2i+m, 2j + n), (16)

where i and j as well as m and n denote pixel coordinates.
The pyramidal layer index is given by l, where l = 0 rep-
resents the original image. Bandpass images are computed
by subtracting layer l from layer l − 1. Since higher layers
contain a lower spatial resolution, they have to be expanded
by interpolation to match the preceding layers resolution.
This step can be described as:



(a) before optimization

(b) after optimization

Figure 6: Two examples from the 180 ◦ Bonn-Rhein
testsequence. (a) shows the panorama before the
multiresolution spline blending step, (b) shows the
final panorama. We point out the good overall result
despite dynamic objects within the scene.

Gl,k = 4
∑ 2∑

m,n=−2

Gl,k−1

(
2i+m

2
,

2j + n

2

)
. (17)

The pyramid of bandpass filtered images is then formed
by

Ll = Gl −Gl+1,l, (18)

where the highest layer is equivalent to the corresponding
Gaussian layer LN = GN . The subtraction above is re-
lated to Laplace operators, which are commonly used in im-
age processing. The resulting pyramid L is therefore called
a Laplacian pyramid. The final image is reconstructed by
simply adding the individual layers of L together.

G0 =

N∑
l=0

Ll,l (19)

Figure 6 compares results of simply stitch overlay tiles
together versus the multi-resolution splining technique. As
can be observed, the individual video frame boundaries dis-
appear in the latter panorama and the mean brightness of
for instance the sky is homogeneous throughout the entire
image.

3. RESULTS
Examples of the algorithm’s output are given in figure 5

and 6. The first sequence yields a high quality panoramic
view which can be mainly contributed to two aspects. First,
the input video has a relatively high resolution, namely HD
720p. Second, the sequence is made up from a smooth pan
shot filmed using a tripod. This means that the camera
center remains static throughout the entire sequence and
therefore makes it perfectly suitable for video to panorama
conversion. The second example shows the Rhine river run-
ning through the city of Bonn, Germany. Although filmed
with a handheld camera not mounted onto a tripod and de-
spite the fact that the boat and the waves on the river itself

form dynamic objects, which are critical in the feature track-
ing process, the result is satisfying. We notice however some
artifacts when closely observing the boat and the mountain
range above it. This effect occurs due to the fact that the
boat has moved between two tiles used during tile stitching.

Figure 7: The image above shows a cylindrical
panoramic view of the volcanic lake at Changbai
shan, China.

Another example can be seen in figure 7. The camera used
here is a Canon Ixus 50, which gives a low quality video in
640 × 480 pixel resolution at 30 frames per second. The
camera center is not static throughout the sequence which
is problematic when attempting to map the video onto a
cylinder’s surface. However, due to blending with multi-
resolution splines the subjective panorama quality is satis-
fying. Distortions at the right hand side of the image are
caused by imperfect computation of the video sequence’s fo-
cal length, which is a problem that could be neglected if the
algorithm received this information directly from a given
camera. The system we used for creating the panoramic
views in this paper is an off the shelf P4 3 GHz Windows
XP computer with 1.5 GByte of RAM. The processing time
for each panorama was roughly in the 2 minute range for se-
quence comprised of 360 frames in average. The algorithms
computational cost is linear with O(n), but the gradient de-
scent tile stitching processing time depends on the overall
video quality. Utilizing the well know 300 frame long Stefan
video sequence at a resolution of 352 × 240 non-cylindrical
panoramic views are synthesized in [9]. Albeit these sprites
are close to perfect in a sense that makes them suitable for
sprite-based video coding and, for instance, segmentation of
dynamic objects, the processing time required to compute
them lies around 10 hours. When comparing this number
with the 2 minutes it takes to create cylindrical panoramic
views with our algorithm it becomes evident why we refer
to our system as fast.

4. LIMITATIONS OF THE ALGORITHM
Despite of good overall results the algorithm presented

here has some limitations. Video sequences with dominant
dynamic foreground objects are problematic during the fea-
ture tracking process and should best be avoided. Also, de-
spite the algorithm being able to handle translations of the
camera center, optimal results can only be obtained when
the camera is rotated as steadily as possible. It is, for in-
stance, not possible to create a panoramic view, by trans-
lating the camera horizontally, due to physical limitations
of optical geometry when very different perspectives of the
same basic scenery are introduced into the process. An ex-
ample illustrating this problem is given in figure 8.

5. SUMMARY
We have successfully created a solution for the automatic

conversion of suitable video sequences into subjectively high



Figure 8: The distorted panoramic view above illus-
trates the limitations of the algorithm. It is impos-
sible to align individual video frames when given a
pure horizontal translation of the camera.

quality cylindrical panoramic views. The algorithm runs
fast and on standard office computers. An intuitive graphi-
cal user interface (GUI), which is shown in figure 9 enables
easy use of the software we call Vi2Pa, making it suitable
for offline creation of panoramic views from videos filmed
during i.e. vacations. We are currently investigating possi-
ble applications of the algorithm with respect to sprite based
video coding and hope to present some achievements in this
field in the near future. Implementation of the algorithm
into next generation camcorders or photo cameras would al-
low for easy creation of high resolution panoramic views for
end customers.

Figure 9: Screenshot showing the GUI of the algo-
rithm in the form of a stand-alone software solution
called Vi2Pa.
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