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Abstract Sprite coding, as standardized in MPEG-4 Visual, can result in superior
performance compared to common hybrid video codecs. We consider sprite coding,
which significantly increases the objective as well as the subjective quality of coded
video content. The main challenge of this approach is the segmentation of the fore-
ground objects in a preprocessing step. We evaluate automatic object segmentation
methods based on global motion estimation and background sprite generation. The
objects are coded using the MPEG-4 Visual Main Profile and compared with the
Advanced Simple Profile.
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1 Introduction

Sprite coding has been developed and standardized some years ago in MPEG-4
Visual/Part 2 [24, 26]. MPEG-4 Visual defines so-called static and dynamic sprites for
background modeling. Static sprites are built offline in a preprocessing step. These
are possibly large still images describing panoramic background. For each frame
in the sequence, a set of eight motion parameters is transmitted that defines the
transformation necessary for reconstruction from the background model. The static
sprite image is transmitted before the first image. Other than that, dynamic sprites
are built online at the decoder from currently decoded video object planes. Dynamic
sprites are then used as reference frames in motion compensation. In this work, only
static sprite coding is utilized.

The main idea of the sprite coding approach is to segment the video content into
foreground and background objects in a preprocessing step. For the background
object, a model, i.e. a so-called background sprite image, is generated, which contains
all background pixels of a given part of the sequence. Global motion estimation
(GME) techniques initiate the sprite generation process and motion parameters are
transmitted as side information to the receiver. The background sprite image and
the foreground object sequence are coded separately. At the receiver, a background
sequence is reconstructed using the background sprite image and the global motion
parameters. The background sequence is merged with the transmitted foreground
object sequence to build a representation of the original sequence. Figure 1 illustrates
the principle of sprite coding. This approach is very promising, as has been outlined
in [27]. It has been shown that even the state-of-the-art video coding standard
H.264/AVC [31] can be outperformed using this technique [17, 21].
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Fig. 1 Sprite-based coding principle
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However, to our knowledge no commercial implementation of the MPEG-4 Vi-
sual standard has used the sprite coding approach. This is due to the fact that for best
results, the preprocessing techniques—i.e. global motion estimation, background
modeling and foreground object segmentation—have to be very sophisticated. For
global motion estimation, a number of methods based on motion vector fields and
pixel-based methods have been proposed. A great deal of these GME techniques
has been presented and compared in [12]. Research on sprite generation for video
sequences has provided the community with a number of techniques as well, includ-
ing the work by Farin et al. [7, 8, 10] and Kunter et al. [13, 19, 20].

The biggest challenge in sprite coding is the segmentation step. The MPEG-4 Vi-
sual standard assumes that the separated foreground and background objects of the
video content are already known. No integrated segmentation step has been defined.
The work by Mech et al. uses short-term global motion compensation for automatic
object segmentation [23]. Another approach is the use of background models in
a background subtraction step for automatic foreground object segmentation [9].
Inspired by this work we developed a new automatic object segmentation algorithm
for sequences with a moving camera. Other than in [9], no common sprites are used
for background subtraction but a model that we call local background sprites, i.e.
a model, that uses the techniques from global background sprite generation but
minimizes distortion introduced in one single sprite image for a whole sequence by
computation of one local sprite for every frame of the sequence. In this work, we
compare a set of integrated automatic foreground object segmentation algorithms
in terms of coding performance with the MPEG-4 Visual Advanced Simple Profile
(which does not include sprite coding).

This paper is organized as follows. Section 2 describes the pixel-based global
motion estimation algorithm that is used for all test scenarios in this paper. Section 3
introduces background modeling techniques including the new algorithm for local
background sprite generation. Section 4 outlines all the automatic foreground object
segmentation algorithms that are compared in Section 5 in terms of coding efficiency.
The last section summarizes this paper.

2 Global motion estimation

The performance of sprite coding critically depends on the accurate estimation of the
background motion. Therefore, it is important to apply a global motion estimation
technique with very accurate estimation of the higher-order motion parameters. The
global motion estimation algorithm used in this work is based on Dufaux et al. [6]
and Krutz et al. [13], respectively. It is a gradient descent-based approach using
feature tracking as initialization and image pyramid decomposition for estimation
refinement. A simplified block diagram of the algorithm is depicted in Fig. 2. The
algorithm decomposes the frames that are subject to motion estimation into an image
pyramid. It contains two downsampled versions and the original frames. Other than
in [6], it comprises an upsampled representation as well. The algorithm then performs
a gradient descent step in every layer of the image pyramid and takes the parameters
from the step before as initialization. Additionally, the first gradient descent step is
initialized translationally by a feature tracking method.
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Fig. 2 Gauss–Newton-based (GN) gradient descent approach for global motion estimation using
feature tracking for parameter initialization and image pyramid decomposition for estimation
refinement

2.1 Motion models and warping

Camera movement introduces displacement between consecutive frames of a video
sequence. This displacement can be described by a motion model. The simplest case
is translational movement, i.e. the displacement in x and y direction, respectively.
The translational motion model Mt can be described mathematically by

Mt : x′ = x + m0

y′ = y + m1

where (x, y)T describe the coordinates of the current pixel and (x′, y′)T the coordi-
nates of its transformed version, respectively. m0 and m1 are the displacement values
in x and y direction.

For modeling rotation, scaling and shearing, the translational motion model has
to be extended. The so-called affine motion model

Ma : x′ = m0x + m1 y + m2

y′ = m3x + m4 y + m5

defines the affine transformation between pixels at position (x, y)T in the current
frame and pixels at (x′, y′)T in another frame. The parameters m2 and m5 describe
translation, m0 and m4 describe scaling and m1 and m3 describe rotation and shearing,
respectively.

Assuming, the content of the frames can be approximated by a plane, the affine
model can be extended by parameters m6 and m7 yielding the perspective motion
model

Mp :
x′ = m0x + m1 y + m2

m6x + m7 y + 1

y′ = m3x + m4 y + m5

m6x + m7 y + 1

(1)

Therefore, the affine motion model Ma is a special case of the perspective model
Mp. The algorithm presented here uses the models presented above for global
motion estimation.
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Knowing the higher-order motion model parameters for the displacement be-
tween two arbitrary frames, the motion can be compensated. This process is called
warping, e.g. using the parameters from (1) a 3 × 3 matrix, often called homography,
can be formed that transforms the pixels at (x, y)T in the current frame to generate a
prediction of another frame:

⎛
⎝

x′ · z′
y′ · z′

z′

⎞
⎠ = M ·

⎛
⎝

x
y
1

⎞
⎠ =

⎛
⎝

m0 m1 m2

m3 m4 m5

m6 m7 1

⎞
⎠ ·

⎛
⎝

x
y
1

⎞
⎠ (2)

The same parameters can be used for warping into the other direction. For that,
the transformation matrix M has to be inverted.

In most cases, the transformed coordinates (x′, y′)T do not match full integer
positions. Therefore, bicubic spline interpolation is used in the proposed algorithm.

2.2 Gradient descent

Gradient descent, also known as method of steepest descent, is a numeric opti-
mization technique for finding the local minimum in a given function. For that, the
algorithm iteratively moves along the negative gradient of the function. Since the
gradient descent algorithm converges in a local minimum, a good initialization has
to be provided to find a global minimum. The initialization procedure used herein is
further described in Section 2.4. The gradient descent algorithm used in this work is
based on the Gauss–Newton approach, i.e. a combination of Newton’s method and
Gaussian elimination.

Based on the perspective motion model described in (1), it is assumed that I(x, y)

is the current frame of size M × N and I′(x′, y′) is its prediction from a reference
frame Iref generated by employing (2). Thus, a parameter vector

m = (m0, m1, m2, m3, m4, m5, m6, m7)
T

is requested that lets I′(x′, y′) be an optimal prediction of I(x, y). Therefore, an error
function is computed by subtraction of both frames. The gradient descent approach
has to minimize this error function. The Gauss–Newton method uses the sum of
squared differences (SSD) as error function:

ε(m) =
M∑

i=1

N∑
j=1

(
I′(x′

i, y′
j) − I(xi, y j)

)2 =
M∑

i=1

N∑
j=1

e2
ij (3)

where M and N describe the frame sizes and eij is the pixel difference at position
(i, j)T . The first derivative of a function yields its gradient. However, (3) depends
on frames of a video sequence, i.e. a random process, and thus, cannot be described
analytically. Therefore, it has to be approximated by a Taylor series. Assuming, the
error function is described sufficiently well by a first order Taylor series, this yields

ε(m + dm) = ε(m) + ∇ε(m)T · dm
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Setting its derivative to zero yields

∇ε(m + dm) = ∇ε(m) + ∂2ε(m)

∂mp∂mq

∣∣∣∣
m

· dm = 0

⇔ dm = −H(m)−1 · ∇ε(m)

where H(m) is the so-called Hessian matrix containing the second partial derivatives
of the error function. In every step k, the algorithm has to update the motion model
parameters by computing dm:

mk+1 = mk + dmk (4)

However, the computation of the second partial derivatives in the inverted
Hessian matrix in every step is computationally intensive. Therefore, the Gauss–
Newton method approximates H(m) using the first partial derivatives. The Hessian
matrix is

H(m) = ∂2ε(m)

∂mp∂mq

∣∣∣∣
m

(5)

Equation (3) in (5) yields

H(m) = ∂

∂mp

∂

∂mq

M∑
i=1

N∑
j=1

e2
ij

∣∣∣∣∣∣
m

= 2 ·
M∑

i=1

N∑
j=1

[
∂eij

∂mp

∂eij

∂mq
+ eij

∂2eij

∂mp∂mq

]∣∣∣∣
m

(6)

The second summand in (6) is small compared to the first summand due to
its multiplication by the error eij. Therefore, it can be disregarded and (6) can be
simplified:

H(m) = 2 ·
M∑

i=1

N∑
j=1

[
∂ I′(x′

i, y′
j)

∂mp

∂ I′(x′
i, y′

j)

∂mq

]∣∣∣∣∣
m

(7)

Furthermore, the gradient of the error function (3) is

∇ε(m) = ∇
M∑

i=1

N∑
j=1

e2
ij = 2 ·

M∑
i=1

N∑
j=1

eij∇eij

= 2 ·
M∑

i=1

N∑
j=1

[
I′(x′

i, y′
j) − I(xi, y j)

] ∂ I′(x′
i, y′

j)

∂mp

∣∣∣∣∣
m

(8)

The partial derivatives in (7) and (8) are computed using

∂

∂mp
I′(x′, y′)

∣∣∣
m

= ∂

∂mp
I′

(
m0x + m1 y + m2

m6x + m7 y + 1
,

m3x + m4 y + m5

m6x + m7 y + 1

) ∣∣∣
m
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for the perspective motion model Mp from (1), which yields the following equations

∂ I′(x′, y′)
∂m0

= ∂ I′(x′, y′)
∂x′ · ∂x′

∂m0
= I′

x · x
D

∂ I′(x′, y′)
∂m1

= ∂ I′(x′, y′)
∂x′ · ∂x′

∂m1
= I′

x · y
D

∂ I′(x′, y′)
∂m2

= ∂ I′(x′, y′)
∂x′ · ∂x′

∂m2
= I′

x · 1
D

∂ I′(x′, y′)
∂m3

= ∂ I′(x′, y′)
∂y′ · ∂y′

∂m3
= I′

y · x
D

∂ I′(x′, y′)
∂m4

= ∂ I′(x′, y′)
∂y′ · ∂y′

∂m4
= I′

y · y
D

∂ I′(x′, y′)
∂m5

= ∂ I′(x′, y′)
∂y′ · ∂y′

∂m5
= I′

y · 1
D

∂ I′(x′, y′)
∂m6

= ∂ I′(x′, y′)
∂x′ · ∂x′

∂m6
+ ∂ I′(x′, y′)

∂y′ · ∂y′

∂m6

= − x
D

· (I′
xx′ + I′

y y′)

∂ I′(x′, y′)
∂m7

= ∂ I′(x′, y′)
∂x′ · ∂x′

∂m7
+ ∂ I′(x′, y′)

∂y′ · ∂y′

∂m7

= − y
D

· (I′
xx′ + I′

y y′)

where D = m6x + m7 y + 1, I′
x = ∂ I′(x′,y′)

∂x′ and I′
y = ∂ I′(x′,y′)

∂y′ , respectively.
Table 1 shows the Gauss–Newton based algorithm used herein, which is based on

the work by Baker et al. [2]. The approach does not warp the reference frame in
every loop using the current set of motion model parameters. Instead, it warps the
current frame I(x, y). Thus, the partial derivatives and the inverted Hessian matrix
can be computed before entering the loop. In terms of computational complexity,
this is very efficient. Variable T in Step 4.5 of the algorithm is a predefined threshold
and kmax in Step 4.7 describes the maximum number of iterations.

Table 1 Fast Gauss–Newton algorithm [2]

Step 1 Compute the gradient of I′(x′, y′) = Iref (I′
x and I′

y)
Step 2 Compute the derivatives ∂ I′(x′, y′)/∂mp, ∀mp ∈ m
Step 3 Compute the inverted Hessian matrix
Step 4.1 Warp frame I(x, y) using the current parameter vector m and (2)
Step 4.2 Compute error frame between I′(x′, y′) and the warped frame from Step 4.1
Step 4.3 Compute ∇ε(m)

Step 4.4 Update motion model parameters as described in (4)
Step 4.5 If SSDk < T, stop the algorithm
Step 4.6 If SSDk > SSDk−1, stop the algorithm after undoing the update from Step 4.4
Step 4.7 If k >= kmax, stop the algorithm
Step 4.8 Goto Step 4.1
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2.3 Image pyramid decomposition

The algorithm for global motion estimation presented herein first generates a
four-step image pyramid containing the original frame, two downsampled and an
upsampled version. On the one hand, this decreases computational complexity, since
the algorithm first approaches the local minimum in lower resolutions and then
refines the estimation in higher resolutions. On the other hand, downsampling results
in smoothing of the error function. Thus, the gradient descent approach converges
faster. Although the results in lower resolutions are not optimal, they pose a good
initialization for computation in the next layer of the image pyramid.

As can be seen in Fig. 2, the various gradient descent steps compute the motion
parameters for different models, i.e. translational, affine, and perspective. Therefore,
the parameters have to be adjusted between the steps. For transition from lower to
higher resolution this means

⎛
⎝

m0 m1 m2

m3 m4 m5

m6 m7 1

⎞
⎠ −→

⎛
⎜⎝

m0 m1 m2 · 2
m3 m4 m5 · 2
m6

2
m7

2
1

⎞
⎟⎠

For transition from higher to lower resolution this means

⎛
⎝

m0 m1 m2

m3 m4 m5

m6 m7 1

⎞
⎠ −→

⎛
⎜⎜⎜⎝

m0 m1
m2

2

m3 m4
m5

2
m6 · 2 m7 · 2 1

⎞
⎟⎟⎟⎠

Downsampling an image results in information loss. Therefore, a low-pass filter is
employed before downsampling to avoid aliasing. Here, a five-tap Le-Gall wavelet
filter is used. Additionally, the upsampled version is generated by employing a seven-
tap Daubechies filter for interpolation, which is a good approximation of the sinc
function and therefore near the optimum [1, 4, 5].

2.4 Initialization using feature tracking

For the gradient descent approach in global motion estimation, a good initialization
is essential. This is because the algorithm runs the risk of converging to a local
minimum that differs from the global minimum. Looking at Fig. 2, one can clearly
see that initialization is performed using the result from the step before. This is
done on all hierarchical layers but the first. Since translational movement results
in a large displacement of the global minimum of the error function, it is requested
that the first layer is provided with a good translational initialization. The algorithm
presented herein uses the feature tracking algorithm presented by Kanade, Lucas,
Shi and Tomasi (KLT) [3, 22, 28, 30].

The KLT feature tracker is a window-based approach that minimizes the squared
error differences between a current and a reference window similar to the gradient
descent approach presented in Section 2.2. However, it uses the second partial
derivatives in the Hessian matrix instead of an approximation by the first partial
derivatives. Kanade et al. assume that the movement between consecutive frames is
small and that it can therefore be approximated by a translational motion model. An
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affine motion model is only used for verification of window correspondences after
a certain temporal distance between them. Since in this work, feature tracking is
needed for initialization, only the translational motion model is used.

Besides tracking of feature windows, their selection is an important issue. Shi and
Tomasi define that a good feature is one that can be tracked well [28]. Thus, a feature
window is good if the matrix

Z =
(

g2
x gxgy

gxgy g2
y

)
,

which comprises its summed gradients, lies both above the noise level of the frame
and is well-balanced. It is

g2
x =

P−1∑
i=0

Q−1∑
j=0

g2
x(i, j)

g2
y =

P−1∑
i=0

Q−1∑
j=0

g2
y(i, j)

gxgy =
P−1∑
i=0

Q−1∑
j=0

gx(i, j) · gy(i, j)

where gx(i, j) is the gradient of the window in x direction, gy(i, j) is the gradient
in y direction and P × Q is the resolution of the feature window. The constraint
concerning the noise level means that both eigenvalues of Z are large. Well-balanced
means that the difference between the eigenvalues is not too large, e.g. two small
eigenvalues indicate a homogeneous region and a large and a small eigenvalue
indicate a unidirectional pattern. Only two large eigenvalues indicate salient features
that can be tracked well. Therefore, a feature window is only used if its eigenvalues
λ1 and λ2 lie above a predefined threshold λT .

The algorithm used for global motion estimation chooses the Nmax best feature
windows from a given reference frame. Then, the KLT tracker finds their correspon-
dences in the current frame. Features can get lost due to occlusion or because they
left the camera scope. Therefore, a set of motion vectors N ≤ Nmax is available for
initialization. Afterwards, outliers are removed using the random sample consensus
(RANSAC) algorithm [11]. Finally, a translational estimate of the displacement
between current and reference frames is generated by computing the mean of the
remaining motion vectors. This estimate represents the initialization for the first
gradient descent step on the coarsest resolution of the image pyramid.

3 Background modeling

Background modeling means the description of the background of a video sequence.
Application scenarios include video analysis for surveillance systems as well as
panoramic image generation in state-of-the-art digital cameras. Here, background
models are needed on the one hand for sprite-based video coding as defined in
MPEG-4 Visual [24, 26]. On the other hand, for background subtraction in fore-
ground object segmentation. Both application scenarios necessitate a model of the
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background of a given sequence. In the following, three algorithms for background
modeling are explained in detail. The first two algorithms, i.e. single and multiple
background sprites, are based on the work done by Kunter et al. [13, 19, 20] and
Farin et al. [7, 8, 10]. For the final experimental setup, these algorithms are used both
for sprite-based video coding and foreground object segmentation in a background
subtraction method. The third background modeling approach, i.e. local background
sprites, is based on the work by Krutz et al. and is exclusively used for segmentation
[14–16].

3.1 Single background sprites

A single background sprite models the background of a given sequence in one single
image. This image is usually of large size and contains only the pixels from the
background of the sequence. An example of a single sprite for the Stefan sequence is
depicted in Fig. 3.

For the creation of a single sprite, an arbitrary reference frame is chosen. For best
results, i.e. minimal distortion in the background sprite image, the reference frame
is the center frame in terms of camera pan. All other frames of the sequence are
warped into the coordinate system of the reference. Therefore, long-term higher-
order motion parameters, i.e. parameters based on the motion models introduced
in Section 2.1, are computed that describe this transformation [29]. First, short-term
parameters are calculated using the global motion estimation approach presented
in Section 2. These short-term parameters are then accumulated by simple matrix
multiplication as shown in Fig. 4.

By transforming all frames into the coordinate system of the background sprite
using long-term parameters, a stack of size M × N × S is created where M × N
is the resolution of the final background sprite and S is the number of frames in
the sequence. The images in this stack are then blended together to generate the
background sprite. Blending filters normally used are linear filters like the mean or
non-linear filters like the median. However, even more complex approaches like
Wiener filtering can be utilized to reach an optimal result. The sprite blending
principle is shown in Fig. 5.

One problem in single background sprite generation is the choice of the reference
frame. Depending on the amount of motion induced by the movement of the camera,
severe geometrical distortion can be caused. In the example in Fig. 3 this problem has
been minimized by the selection of an optimal reference frame in terms of distance to
the borders of the sprite image. If the first frame of the sequence, i.e. the frame that
has been mapped onto the right side of the sprite image, had been used, distortion

Fig. 3 Single background sprite, sequence Stefan, reference frame 253
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Fig. 4 Generation of long-term higher-order motion parameters [29]. The short-term parameters
used for generation have been calculated using the approach presented in Section 2

on the left side would have been even higher. Additionally, the error in long-term
motion parameters increases with growing distance to the reference frame. This is
due to error accumulation by multiplication of short-term parameter matrices. This
problem can as well be minimized by the right selection of the reference frame.

3.2 Multiple background sprites

As mentioned before, strong camera motion can result in severe geometrical dis-
tortion when generating a single background sprite image for a complete video
sequence. This distortion causes decreased quality of the background model and
additionally increases coding cost due to large image resolutions needed for repre-
sentation. This can be seen in Fig. 3, where only a part of the sprite image is actually
used for background content. In some cases where the camera pan exceeds an angle

Fig. 5 Sprite blending principle: An image stack of spatially aligned frames is built by warping all
frames into the coordinate system of the reference frame Ir . Blending is performed for all pixel values
into the time direction [19]
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of 90 degrees, generation of one single background sprite image is not even possible.
These drawbacks have led to so-called multiple background sprites.

For the generation of multiple background sprites, the camera motion is analyzed
first. The next step is to split the video sequence into partitions depending on the
motion analyzed before. Afterwards, a background sprite is generated independently
for every partition as described in Section 3.1.

For analysis, we exploit the fact that for common camera setups a transformation
matrix W0,n, i.e. the homography describing the motion between a reference frame
I0 and another frame In, can be decomposed into a product of intrinsic and extrinsic
camera parameter matrices

W0,n = FnR0,nF−1
0

= 1
α0,n

⎛
⎜⎜⎝

r00 r01 f0r02

r10 r11 f0r12

r20
α0,n

f0
r21

α0,n

f0
r22α0,n

⎞
⎟⎟⎠ (9)

where R0,n is the rotation matrix between frame I0 and In, and Fn and F0 contain focal
length values of both views. After computation of the focal length ratio α0,n = f0

fn
, we

calculate the focal length of the reference frame as the median of all solutions from
(9). This is done by exploiting orthogonality and constant vector norm constraints
for the matrices W0,n. Knowing all focal lengths, the rotation angles can finally be
computed using trigonometrical properties of the center points for every image [20].
Figure 6 shows the basic principle for the creation of multiple background sprites for
a sequence with a large camera pan. Figure 7 shows the multiple background sprites
generated with the approach presented above for the Stefan video sequence.

3.3 Local background sprites

A local background sprite (LBS) specifies a model of the background. Other than
general background sprites one model is built for every frame and not one model
for the whole video sequence. Only the local temporal neighborhood of each
reference frame is taken into account for sprite generation. The dimensions of a local
background sprite match those of the reference frame. The idea is to minimize
distortion in background regions. When a background frame is reconstructed from a

Fig. 6 Example for the partitioning of a video sequence into multiple background sprites for panning
camera with constant focal length [19]
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(a) Frames 0-244

262-299Frames(c)245-261Frames(b)

Fig. 7 Multiple background sprites, sequence Stefan

general background sprite, distortion can be severe. This is due to accumulated errors
in the global motion estimation, non-ideal interpolation and the double mapping into
the coordinate system of the background sprite and back. The algorithm for modeling
local background sprites for a given video sequence is depicted in Fig. 8.

For global motion estimation, the hierarchical gradient descent approach based on
the Gauss–Newton method as presented in Section 2 is applied. Since the short-term
displacement between two frames Ip and Iq is used several times while creating all
local background sprites for a video sequence, the motion parameters are computed
in a preprocessing step. This means for a sequence with n frames the set T of
transformation matrices

T = {W0,1, W1,2, . . . , Wn−2,n−1}

GME

Blending
n=1

ref=ref+1

Warp frame

to reference frame

Iref−n

Sequence of local
background sprites

Warp frame

to reference frame

Iref+n

ref < ref max

Yes

No

Quality
sufficient?

No

Yes

Video n=1, ref=0

n=n+1

Fig. 8 Modeling the background by means of local background sprites
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and its inverted correspondences

Tinv = {
W−1

0,1, W−1
1,2, . . . , W−1

n−2,n−1

}

are computed where |T| = |Tinv| = n − 1, W−1
p,q = Wq,p and

Wp,q =
⎛
⎝

m0,p,q m1,p,q m2,p,q

m3,p,q m4,p,q m5,p,q

m6,p,q m7,p,q 1

⎞
⎠

is the transformation matrix between frames Ip and Iq.
For every reference frame, a local background sprite is built. The algorithm iter-

atively transforms neighboring frames into the coordinate system of the reference.
This produces a dynamically growing image stack of size M × N × St where M and
N are the dimensions of the reference frame and St = 2t + 1 is the depth of the stack
in step t. In step t = 0, the stack only contains the reference frame. This approach can
be seen in Fig. 9.

For the transformation of an arbitrary frame into the reference’s coordinate sys-
tem, the short-term motion parameters from the preprocessing step are accumulated
to generate long-term parameters, which can be seen in Fig. 4. The global motion
estimation can only compute the displacement between two frames by approxima-
tion. Due to existing small errors and the accumulation, the error in the long-term
parameters grows larger with increasing temporal distance to the reference frame.
Hence, the long-term parameters are used as initialization for another gradient
descent step to reduce this error.

In every step t, the images in the stack are merged together to build a preliminary
local background sprite of size M × N. For this purpose, a so-called blending filter
is used, which here is a median filter. The median returns the middle value of an
ordered dataset, in this case a set of luminance and chrominance values, respectively.
The advantage compared to using a mean filter is its robustness to outliers. Addition-
ally, the median is always an element of the set itself and does not, therefore, produce
new values.

By successively adding temporally neighboring frames, the foreground objects in
the preliminary local background sprites are removed step by step. This is due to
the area behind the foreground objects that is disclosed because of their movements.
This can be seen in Fig. 10. Depicted are the preliminary local background sprites

I228

I229 I231

I232

I230

I' 229

I' 228

I' 231

I'230

I' 232

.
.

.

.
.
.

x

y

z

Fig. 9 Creation of an image stack for the generation of a local background sprite, sequence Stefan,
reference frame 230
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(a) Step t = 1, St = 3 (b) Step t = 2, St = 5

(c) Step t = 3, St = 7 (d) Step t = 8, St = 17

Fig. 10 Preliminary local background sprites, sequence Stefan, reference frame 230

for the Stefan sequence for various steps t. One can clearly see that the foreground
object has nearly completely vanished after eight blending steps.

It is possible to evaluate the quality of the background model in every step
subjectively. However, an automatic evaluation criterion is desirable that stops the
generation of the local background sprite when its quality is good enough and the
foreground objects are removed sufficiently. Therefore, an approach for automatic
quality evaluation is applied.

A possible measure for the difference between two frames is the root mean square
error (RMSE). The RMSE between a reference frame Iref(x, y) and its preliminary
local background sprite Ibs,t(x, y) in step t is defined by

RMSEt =
√√√√ 1

MN

M−1∑
i=0

N−1∑
j=0

(Iref(i, j) − Ibs,t(i, j))2

where M and N are the dimensions of the reference frame and the preliminary
local background sprite. The preliminary local background sprite in step t = 0 is the
reference frame itself so that Ibs,t=0 = Iref and RMSEt=0 = 0. Since the foreground
objects vanish step by step, the RMSE value increases successively. However, the
difference of the RMSE values in two consecutive steps

� RMSEt = RMSEt − RMSEt−1 (10)
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decreases. When the foreground objects are completely eliminated, the values in (10)
change only marginally.

At the beginning, foreground objects are still present in the preliminary local
background sprite. Change in these regions leads to high values of � RMSEt. After
several steps, most of the foreground is eliminated, which leads to lower values of
� RMSEt. It holds true that

� RMSEa >= � RMSEb

for a <= b . The value � RMSEt can be interpreted as a measure for the information
about the background that has been added to the local background sprite in step t.

However, using the measure � RMSEt is not without problems when only small
foreground objects are present since small objects only take a minor percentage of
the whole frame. The influence of errors in these regions on the measure is small
compared to the sum of errors in the background regions. In this case, plotting RMSEt

and � RMSEt against time produces very flat curves, which make a decision on the
quality of the preliminary local background sprite very difficult. Therefore, we define
matrices containing the blockwise calculated value � RMSEt, which we call dRMSE
matrices.

Reference frame and preliminary local background sprite are divided into blocks
of fixed size, which can be seen in Fig. 11. In this work, various block sizes between
10 × 10 and 40 × 40 have been tested. The problem with small block sizes is that
the profile of the dRMSE matrices is of high frequency. With large block sizes, the
unwanted effect of averaging of large regions sets in again. Here, a fixed block size
of 25 × 25 has shown to be useful. The value RMSEt is then calculated for every
block independently. Therefore, no averaging over the whole frame takes place.
Distinct areas in the preliminary local background sprite can now be evaluated
independently. Furthermore, the difference to the block values in the step before
is computed using (10).

Figure 12 shows the corresponding matrices for the example in Fig. 10. At the
beginning, the plot of the matrix is very wavy. With increasing steps t the matrix
flattens successively. This means, the more temporally neighboring frames are trans-
formed into the local background sprite’s coordinate system the less information

Preliminary LBS,(b)Reference frame(a) t = 2

Fig. 11 Partitioning of images into blocks of size 25 × 25, sequence Stefan, reference frame 230
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Fig. 12 dRMSE matrices using blocks of size 25 × 25, sequence Stefan, reference frame 230. This
example corresponds to the preliminary local background sprites from Fig. 10

about the background of the reference frame is gained. The peak in the middle of
the matrices in Fig. 12 results from the moving tennis player and the area behind
him that is disclosed. However, the RMSE in the background regions doesn’t change
significantly. After 8 blending steps, i.e. after 16 frames and the reference frame have
been blended (cf. Fig. 12d), the matrix is nearly flat in all regions. This corresponds
to the results in Fig. 10.

The quality of the preliminary local background sprites is now assessable in a very
differentiated way. Assuming that the generation of the local background sprite is
to be aborted when there is no more information added in any region, meaning the
matrix presented is flat in every region, one possible way to stop the local background
sprite generation is evaluating the maximum value of the dRMSE matrices. The
generation is aborted if the maximum value falls below a threshold of 5.0.

4 Foreground object segmentation

In this section we introduce three automatic foreground object segmentation algo-
rithms that are based on global motion estimation and background model generation.
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All algorithms generate an error frame for a given reference that is processed using
the segmentation algorithm previously published by Krutz et al. [18]. Sections 4.1
to 4.3 describe the algorithms for error frame generation. Section 4.4 deals with the
actual segmentation algorithm that is common for all approaches.

4.1 Error frame generation using short-term motion compensation

The first approach for automatic foreground object segmentation is based on earlier
work by Mech et al. [23]. Figure 13 illustrates its processing chain. Here, global
motion compensation (GMC) means that the background motion of two consecutive
frames of a video sequence is estimated and compensated. When an error frame Ei is
calculated by applying GMC using the reference frame Iref and one of its neighbors
Iref−1 or Iref+1, the background pixel values are ideally removed completely. How-
ever, the foreground object regions from both frames that are involved appear in the
error frame. This results in non-optimal segmentation since for moving foreground
objects their region is extended. Therefore, two error frames are computed, i.e.
E1 using the reference frame Iref and its predecessor Iref−1 and E2 using the
reference frame and its successor Iref+1. The segmentation algorithm presented in
Section 4.4 is then applied for both error frames to create two preliminary binary
masks B1 and B2. Assuming both preliminary binary masks contain oversegmented
foreground regions, a better estimate of the correct foreground region is then found
by combining both masks using a logical AND operation. This generates the final
binary foreground object mask Bref.

4.2 Error frame generation using single and multiple background sprites for
background subtraction

Single and multiple background sprites, as introduced in Sections 3.1 and 3.2, can
be used as background model for background subtraction-based foreground object
segmentation. This approach has been outlined before, e.g. by Farin et al. [9], and
turned out to be very promising. However, the error frames created using back-
ground subtraction of reconstructed sprite image and original frame occasionally
result in oversegmented regions in the background area. This is due to the fact that
depending on the amount of camera motion the mapping of pixel content into the
coordinate system of the background sprite images causes distortion. Additionally,
non-optimal interpolation and short-term global motion estimation errors increase
this negative effect. Thus, this approach is combined with the short-term global

GME/GMC

GME/GMC

Segmentation

Segmentation

AND

Iref

Iref−1

Iref+1

E2

E1 B1

B2

Bref

Fig. 13 Short-term motion compensated error frame generation and foreground object segmenta-
tion (Algorithm1) based on Mech et al. [23]
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motion compensation technique outlined in Section 4.1, i.e. one processing chain
from Algorithm1. A block diagram of this approach is shown in Fig. 14. The algorithm
first performs a global motion estimation step to estimate the short-term motion
between every two successive frames of the sequence. This is done as presented
in Section 2. The estimated motion parameters are then used to generate a binary
foreground mask for a given reference frame Iref by combination of two approaches.
The first approach, i.e. the upper processing chain in Fig. 14, generates a preliminary
binary foreground mask B1 by global motion compensation between the reference
frame and its predecessor Iref−1 to have an exact removal of background regions
in the error frame E1. The second approach, i.e. the lower processing chain in
Fig. 14, generates a preliminary binary foreground mask B2 by background sprite
generation, reconstruction and background subtraction to have an exact contour of
the foreground object area in the error frame E2. Both approaches use the same
error frame segmentation algorithm. The binary masks B1 and B2 are afterwards
combined using a logical AND operation.

4.3 Error frame generation using local background sprites for background
subtraction

Using common background sprites, i.e. single or multiple background sprites, for
foreground object segmentation in a background subtraction method can lead to
non-optimal results. This is due to the fact that, besides the mapping of pixel content
into the coordinate system of the sprite image, a second mapping has to be performed
for background frame reconstruction. This problem is illustrated in Fig. 15. This
second mapping may result in distortion that is due to errors in motion estimation and
non-ideal interpolation. If the background frame representation is distorted, back-
ground regions in the final binary object mask may be oversegmented. Algorithm2
in Section 4.2 tries to solve this problem by combination with a parallel processing
chain that uses short-term motion compensation for exact background removal in
the binary mask.

However, the quality of the background model can be enhanced even more if local
background sprites are used (cf. Section 3.3) for background subtraction. Therefore,
Algorithm3 uses this model for background representation. The algorithm is depicted
in Fig. 16. The algorithm first performs a short-term global motion estimation
between every two successive frames of the sequence to generate a set of short-
term homographies. These are then used to generate a local background sprite, as

sequence

Generation
Sprite
Reconstruction

Background
Subtraction Segmentation

GME AND

GMC Segmentation

E2

E1 B1

B2

Bref

exact background removal

exact foreground description

Sprite

Fig. 14 Foreground object segmentation combining short-term global motion compensation for
exact background removal and single/multiple sprite-based background subtraction for exact fore-
ground contour description (Algorithm2)
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Fig. 15 Illustration of the pixel mapping problem, which occurs when using common background
sprites for foreground object segmentation: For reconstruction of the background of a single frame,
a pixel mapping needs to be performed causing distortion. When used in a background subtraction
algorithm, this can result in non-optimal segmentation

described in Section 3.3, for a given reference frame Iref. The subsequent background
subtraction produces a very exact error frame Eref that is afterwards processed using
the segmentation approach that is common to the other algorithms to produce a
binary foreground object mask Bref.

4.4 Error frame processing for foreground object segmentation

The foreground object segmentation approach relies on precomputed error frames,
e.g. using one of the approaches from Sections 4.1 to 4.3. The algorithm itself has
been published before by Krutz et al. [18] and is listed in Table 2.

The algorithm assumes significant difference between foreground and background
regions in the error frames (Step 1). The generation of the final binary foreground
object mask is then realized in several steps. First, the absolute values of the pixels in
the error frame are computed (Step 2).

Assuming, distortion in the background regions is high-frequency, the error values
in these areas can be smoothed using a low-pass filter. However, common low-pass
filters, e.g. Gaussian filtering, do not differentiate between high frequencies caused
by noise and high frequency caused by object borders. Therefore, the anisotropic

sequence

Sprite Generation
Background
Subtraction

Segmentation
BrefEref

GME
Local Background

Fig. 16 Foreground object segmentation based on background subtraction using local background
sprites (Algorithm3)
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Table 2 Anisotropic diffusion-based segmentation algorithm

Step 1 Compute error frame Eref using one of the approaches from Sections 4.1 to 4.3.
Step 2 Compute absolute pixel values of error frame Eref.
Step 3 Perform anisotropic diffusion-based low-pass filtering.
Step 4 Intensity rescaling.
Step 5 Create preliminary binary mask using weighted mean thresholding.
Step 6 Morphological operation 1: Remove small objects.
Step 7 Morphological operation 2: Closing.
Step 8 Morphological operation 3: Fill holes.
Step 9 Morphological operation 4: Remove small objects.

diffusion-based low-pass filter proposed by Perona et al. is used [25] (Step 3). The
algorithm is based on the diffusion equation, also known as heat equation

It = div(ρ(x, y)∇ I(x, y)) (11)

where ρ(x, y) is the diffusion coefficient and ∇ I(x, y) is the gradient of frame I(x, y).
If ρ(x, y) is constant, It is simplified to the isotropic diffusion equation. Assuming
the position of object borders is known, a setting of ρ(x, y) = 1 inside homogeneous
regions and ρ(x, y) = 0 at object borders would be requested. However, these
positions are not known. Therefore, an estimate is necessary. The absolute value
of the gradient of I(x, y) can be such an estimate. Then, ρ(x, y) is a function g(·) of
this estimate:

ρ(x, y) = g(|∇ I(x, y)|)
A non-negative monotonically decreasing function has to be chosen for g(·) with

g(0) = 1. This means that for regions with small gradient values, i.e. |∇ I(x, y)| → 0,
it is g(|∇ I(x, y)|) → 1. A stronger filtering in homogeneous regions would be the
result. Here,

ρ(x, y) = 1

1 +
( |∇ I(x,y)|

κ

)2 (12)

is used, where κ is a predefined constant. Equation 12 in (11) yields

It = div

⎛
⎜⎝ 1

1 +
( |∇ I(x,y)|

κ

)2 ∇ I(x, y)

⎞
⎟⎠

After generation of a filtered error frame, its values are normalized by intensity
value rescaling to [0, 1] (Step 4). Then, a preliminary binary mask is calculated by
thresholding (Step 5). The threshold t is computed as a weighted mean using

t = mean(It,norm) + ς · (max(It,norm) − mean(It,norm))

where It,norm is the filtered and normalized error frame and ς is a constant for
weighting the threshold.

Finally, the preliminary binary mask is processed using a set of morphological
operators. First, small objects are removed (Step 6), i.e. regions smaller than a pre-
defined threshold. Then, a closing operation is performed to link neighboring objects
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(Step 7). Assuming foreground objects contain no holes, these are filled (Step 8). At
the end, small objects with a threshold larger than the first removal operation are
removed again (Step 9). This step concludes the segmentation algorithm.

5 Experimental evaluation

For the experimental evaluation, we considered six test sequences that are listed in
Table 3. First, background sprite images have been generated for all test sequences
using the approaches presented in Sections 3.1 and 3.2. However, multiple sprites
have only been generated for Biathlon and Stefan, since the camera pan in all other
sequences is too narrow to make this worthwhile. In the multiple sprites-case, the
sequence Biathlon is divided into four partitions (frames 0 to 9, 10 to 22, 23 to 46,
and 47 to 199) and Stefan is divided into three partitions (frames 0 to 244, 245 to 261,
and 262 to 299). Some examples of background sprite images are depicted in Fig. 17.

Second, segmentation has been performed using all test sequences from Table 3
and all given algorithms, i.e. Algorithm1 based on short-term global motion compen-
sation (cf. Section 4.1), Algorithm2 based on background subtraction using single and
multiple sprites (cf. Section 4.2), and Algorithm3 based on background subtraction
using local background sprite modeling (cf. Section 4.3). Additionally, for the
sequences Biathlon and Stefan, groundtruth masks for the foreground objects were
available. Therefore, we also used these as an ideal segmentation case for sprite cod-
ing to evaluate the influence of correct segmentation in terms of coding performance.

Last, the sequences were coded using the sprite coding approach presented in the
introduction. Therefore, the MPEG-4 Visual reference coder software MoMuSys
(Mobile Multimedia Systems) has been used applying the Main Profile (MP) for
sprite coding. Additionally, all sequences were coded as one rectangular video
object using the Advanced Simple Profile (ASP) for comparison. The quantization
parameter (QP) has been kept constant (QPbg = 14) for the background model for
all test sequences. The foreground object sequences have been coded using one of
several quantization parameters, i.e. QPfg ∈ {7, 10, 14, 21, 28, 31}, as is the case for
the ASP. It has to be stated explicitly that the choice of QPbg is purely random, i.e.
no optimization in terms of setting the best combination of QPbg and QPfg has been
done. The prediction structure has been set to IPPP with a GOP size of 16 for sprite
coding as well as for the ASP to ensure comparability. Quarter-pel motion vector
accuracy has as well been enabled for both profiles.

Table 3 Test sequences used for comparison of MPEG-4 Visual sprite coding using various
automatic foreground object segmentation approaches

Sequence Source Resolution Frames FPS [Hz]

Allstars ZDF (German television) 352 × 288 250 25
BBC-Pan12 BBC (documentary Planet Earth) 720 × 576 185 25
BBC-Pan13 BBC (documentary Planet Earth) 720 × 576 110 25
Biathlon ARD (German television) 352 × 288 200 25
Mountain BBC (documentary Planet Earth) 352 × 192 100 25
Stefan MPEG 352 × 240 300 30
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(a) Single sprite for BBC-Pan13 (b) Multiple sprite 3/4 for Biathlon

(c) Single sprite for All stars

Fig. 17 Examples of background sprite images generated using the approaches from Sections 3.1
and 3.2

Figure 18 shows rate-distortion results for all test sequences used. It can be seen
in all curves that the segmentation approach Algorithm3, i.e. segmentation based on
background subtraction using local background sprites, outperforms all other seg-
mentation techniques. Additionally, when multiple background sprites are used (cf.
Figs. 18d, f), the performance is better than compared to using one single background
sprite image as a model.

For the sequence BBC-Pan12 (cf. Fig. 18b), the sprite coding approach performs
worse than coding the sequence using MPEG-4 ASP. This can be explained with the
content of the sequence. It shows a group of monkeys wading through water, which is
moving and takes a large part of the video frame. Dynamic textures, e.g. water, have
to be assumed as foreground objects in a video, since their movement differs from
the global motion. Such a dynamic texture cannot be modeled correctly by a static
background sprite. However, all segmentation approaches presented in this work
define the water as background. Therefore, the decoded video frames differ strongly
from the original sequence in these parts after reconstruction of background sprite
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Fig. 18 Comparison of rate-distortion performance for coding using MPEG-4 Visual ASP with
MPEG-4 Visual MP (sprite coding) applying different types of background sprites and segmentation
algorithms

image and foreground object sequence. This results in a lower PSNR compared to
MPEG-4 ASP, which correctly reconstructs the dynamic texture.

In Fig. 18c, the rate-distortion curves for the test sequence BBC-Pan13 are shown.
Here, no curve for coding the sequence with the MPEG-4 ASP is depicted, since the
bit rate needed for coding this sequence using the ASP is in the range of about 800
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kbit/s to 1,200 kbit/s, depending on the coarseness of quantization. The reason for
the low bit rate range when using sprite coding compared to the ASP is the content
of the sequence. The foreground objects, i.e. a group of flying birds, are very small.
Therefore, the background model already shows nearly the complete sequence. In
other words, the bit rate needed for coding the foreground object sequence is only
one–two times the bit rate needed for coding the background model. E.g. for the
sequence Allstars, the bit rate for the foreground object sequence is three-11 times
higher than that needed for the background model, depending on the combination
of quantization and segmentation approach. Therefore, the BBC-Pan13 sequence is
an excellent example of the capabilities of the sprite coding principle.

The usage of a single background sprite image for the sequence Biathlon (cf.
Fig. 18d) did not perform as well as expected. It turned out that the generation of
the background model introduced some errors. This can as well be explained with
the content of the sequence. Figure 17c shows one of its multiple sprites, which gives
an impression of its content. Most part of it is snow, i.e. homogeneous content. In
background sprite generation, long-term motion compensation is performed. This
means that a mapping of pixel content between temporally remote frames has to be
done. This is challenging when large homogeneous areas are present and may lead
to bad results, as is the case here. Additionally, the camera moves very fast, which
makes background sprite image generation even harder. Due to these problems, the
quality of the background model for this sequence is not very good, which leads to a
bad rate-distortion performance.

6 Summary

We have proposed an automatic object segmentation algorithm, i.e. Algorithm3, for
video sequences with a moving camera towards automatic object representation for
sprite coding as standardized in MPEG-4 Visual. We compared this approach to
using several other segmentation methods and showed that it always performs better
than these. Additionally, it was shown that the new segmentation approach performs
comparable to manually segmented groundtruth masks, meaning an almost perfect
solution in terms of rate-distortion performance has been found. Using this approach,
automatic sprite coding could become applicable.
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