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ABSTRACT

A new approach for highly robust and precise global motion estima-
tion (GME) using motion vectors (MVs) is presented. We show that
this approach obtains precise higher-order short-term motion param-
eters for global motion using motion vectors solely. The approach
is general and works for different mathematical methods including
least-squares and Newton-Raphson method. We show that the ap-
proach is suitable for fixed block sizes from plain full-search block-
matching as well as for arbitrary block sizes from video streams
compressed with H.264/AVC reference encoder. The proposed ap-
proach is compared against four other known MV-based GME (MV-
GME) methods. Our results show that the approach is significantly
more robust and obtains higher precision for global motion parame-
ters in terms of background motion compensation, especially if mov-
ing objects occur. In addition, the results are as good as results from
precise pixel-based GME methods or even better while the presented
MV-GME methods have very low computational costs.

Index Terms— Motion analysis, Motion estimation, Motion
compensation, Video coding, Video analysis

1. INTRODUCTION

Higher-order motion parameters estimated by GME algorithms are
necessary for many image processing applications such as video mo-
saicing, moving object segmentation, video coding, camera motion
characterization, video analysis, etc.

Several GME algorithms were proposed recently, where pixel-
based GME algorithms [1, 2, 3] use the luma signals of an image pair
and MV-GME methods like [4, 5, 6, 7] use MVs obtained by block-
matching. Motion vectors are included in video streams of motion-
compensated video codecs. The vectors are essentially reused by
MV-GME with the motivation to lower the computational complex-
ity for GME and avoid a repetition of motion estimation with block-
matching or pixel-based GME due to their significantly higher com-
putational costs.

However, previously proposed MV-GME methods do not ob-
tain the quality of pixel-based GME methods as we will show in
the experimental section. The approach, which is presented in this
paper, solves this problem. The computational complexity remains
significantly low while pixel-based GME quality is obtained. This
becomes possible when appropriate initialization is combined with a
robust estimator.

We evaluate two pixel-based and six MV-GME algorithms by
means of background Y-PNSR for global motion compensation on
five sequences with and three sequences without moving foreground
objects.

The paper is organized as follows. Section 2 introduces the pro-
posed approach for GME using MVs. Section 3 presents the experi-
mental results. The paper concludes with Section 4.

2. ROBUST MV-GME APPROACH

The block diagram of our robust MV-GME approach is shown in
Fig. 1. All blocks and symbols are introduced and described in this
section.

Motion vectors obtained by block-matching as used within hy-
brid video codecs describe the displacement of a block in a current
frame with respect to the best match in the reference frame. This
work assumes that the reference frame is the previous frame in tem-
poral order (P frame). The partition of blocks in the current frame
can be fixed as in MPEG-2 or variable in size as in MPEG-4 part 2
and 10 (H.264/AVC). The i-th motion vector vi of a motion vector
field (MVF) has vx,i and vy,i as horizontal and vertical displace-
ments for a block at position (xi, yi) which are the horizontal and
vertical coordinate values within the frame. A block weight ni is as-
signed to the i-th motion vector due to the different size of block par-
titions in the current frame. This enables MV-GME to support fully
modern tree-structured motion vector fields. We define the block
weight ni as

ni =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

16 , if block size is 16× 16,

8 , if block size is 16× 8 or 8× 16,

4 , if block size is 8× 8,

2 , if block size is 8× 4 or 4× 8,

1 , if block size is 4× 4.

The block weight ni is currently adapted for block sizes in the range
of 4× 4 to 16× 16. This weight can be readapted for other limits of
variable block sizes if desired.

Skip macro-blocks contained in compressed video streams are
ignored by default and are considered only if too few motion vectors
are available. It may occur that these few motion vectors belong to a
moving object, so that it is necessary to consider the skip blocks as
zero-motion to stabilize the GME. Skip blocks are used if

∑
∀i ni is
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Fig. 1. Block diagram for the robust MV-GME approach
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(a) Motion vectors vi (color symbolizes the
direction and luma represents logarithmi-
cally the magnitude, intra-MB is cyan, skip-
MB is yellow)

(b) Final weights wi for perspective MV-
GME-NR (white equals 1, black equals 0)

(c) Global motion compensation error com-
bined with background mask and a border
mask of 15 pixels

Fig. 2. Example for vi, wi, and motion compensation error for Stefan sequence (MVF for frames 295-296) for H.264 JM 16.2, EPZS, QP30

smaller than TskipNmax where Tskip is chosen experimentally as 20%
and Nmax is the maximum number of blocks for a notional fixed 4×4
partition and is computed by 16 times the number of macro-blocks
for a fixed 16× 16 partition.

A displacement originated by a parametric motion model at
point (xi, yi) can be seen as a motion vector estimate ṽi. Such
estimates can be computed for the translational motion model
mt = (m2,m5) so that

ṽx,i(xi, yi,mt) = m2

ṽy,i(xi, yi,mt) = m5.

For affine motion model ma = (m0,m1,m2,m3,m4,m5) the vec-
tor components are

ṽx,i(xi, yi,ma) = m0xi +m1yi +m2 − xi

ṽy,i(xi, yi,ma) = m3xi +m4yi +m5 − yi,

and for perspective model
mp = (m0,m1,m2,m3,m4,m5,m6,m7) we obtain

ṽx,i(xi, yi,mp) =
m0xi +m1yi +m2

m6xi +m7yi + 1
− xi

ṽy,i(xi, yi,mp) =
m3xi +m4yi +m5

m6xi +m7yi + 1
− yi.

With these estimated motion vectors ṽi using a global motion model,
new coordinate values can be computed by

x′
i = xi + ṽx,i(xi, yi,m)

y′
i = yi + ṽy,i(xi, yi,m).

The M-estimator principle is used during iterative estimation to
remove successively outlier. For this, a weight wi is introduced for
each MV. Our approach uses a binary weighting function, so that
either MVs are used for estimation or ignored completely [8].

The error between the motion vector vi and estimated motion
vector ṽi using global motion parameters is defined as

ex,i(m) = wi(vx,i − ṽx,i(xi, yi,m))

ey,i(m) = wi(vy,i − ṽy,i(xi, yi,m)).

We then define the weighted mean match error (wMME)

wMME(m) =
1∑

∀i∈W

ni

∑
∀i∈W

ni (|ex,i(m)|+ |ey,i(m)|)

for a given set of motion parameters m where W = {i : wi > 0}
is the index set of non-zero weighted elements of all i. The wMME
considers the block weights ni and is used as objective criterium to
decide between different global motion parameter sets.

Initialization: The estimation of global motion parameters needs
an appropriate initialization. To this end, weighted mean is deter-
mined as

mean(vx,i) =
1∑

∀i
ni

∑
∀i

nivx,i

mean(vy,i) =
1∑

∀i
ni

∑
∀i

nivy,i

as well as the weighted median values for vx,i and vy,i are computed
on

∑
∀i ni elements wherein motion vector vi occurs ni times.

These values are used to form translational motion parameters

mmean = (mean(vx,i),mean(vy,i)),

mmedian = (median(vx,i),median(vy,i)).

The further used set is selected according to the lowest weighted
mean match error. This set is used to compute the initial weights wi.

Updating wi: The updating is only accomplished if
∑

∀i∈W ni

exceeds TupNmax. The threshold used for outlier rejection is μ + σ,
where

μ =
1

Nmax

∑
∀i∈W

ni (|ex,i(m)|+ |ey,i(m)|)

σ2 =
1

Nmax − 1

((
Nmax −

∑
∀i∈W

ni

)
μ2 +

∑
∀i∈W

ni

( |ex,i(m)|+ |ey,i(m)| − μ
)2)

.

The update of weights wi is performed for a non-zero mean error μ.
Before the updating step is finalized, the number of outliers is deter-
mined. Each motion vector with absolute error |ex,i(m)|+|ey,i(m)|
greater than the threshold μ + σ is considered as an outlier. Before
the weights are updated, it is ensured that the sum of ni for non-zero
weighted motion vectors has to be at least TupNmax. Otherwise the
weights remain unchanged. Tup is chosen experimentally as 20%.
The binary weighting function is defined by

wi =

{
0 if |ex,i(m)|+ |ey,i(m)| > μ+ σ,

1 otherwise.
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The threshold μ+σ decreases rapidly after initial update of weights
wi and in subsequent update steps. In each update step outliers are
removed and within each iteration the motion model improves as
well. For example, the thresholds in each iteration for MVF in Fig.
2 are 9.81, 2.20, 0.68, 0.35, and 0.23.

The iterative estimation begins with the initial motion parameter
set m and the initial updated weights wi. The iteration steps are as
follows:

1. Step: Use current motion parameter set m and current
weights wi to determine the incremental change Δm.

2. Step: Determine the new set of motion parameters m+ =
m+Δm.

3. Step: Iterative estimation is terminated for a maximum num-
ber of iterations Nit or for certain conditions of Δm.

4. Step: Update weights wi using new motion parameters m+,
increment the number of iterations, and proceed with step 1.

The estimation is done independently for affine and perspective mo-
tion models. The resulting parameters are compared with wMME
and the set with the smallest error is selected as the final estimated
global motion parameters. This implies an automatic decision
whether affine or perspective motion model is used.

The first step of each iteration differs for different mathematical
methods and is described in more detail in the following sections as
well as corresponding termination conditions from step three.

2.1. MV-GME using Least-Squares Solution

Matrix Ha and vector ra consider all vi with i ∈ W so that

Ha =

⎛
⎜⎜⎜⎜⎝

...
...

...
...

...
...

xi yi 1 0 0 0
0 0 0 xi yi 1
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎠

ra =
(
. . . x′

i y′
i . . .

)T
.

The new affine motion parameters m+
a are computed using least-

squares solution (LSS) similar to [5] and the corresponding change
in parameters is given as Δma

m+
a = ((HT

aHa)
−1HT

a ra)
T

Δma = m+
a −ma.

Matrix Hp and vector rp are defined for the perspective motion
model for all vi with i ∈ W . The new perspective parameters m+

p

and the difference Δmp are computed analog as described above.
The iteration of MV-GME-LSS stops if the maximal number of

iterations is reached or no change in parameters occurs due to un-
changed weights wi in the last iteration step so that ||Δmp||1 = 0.
The maximal number of iterations Nit is set to 5 for comparison with
MV-GME using Newton-Raphson method.

2.2. MV-GME using Newton-Raphson Method

Hessian matrix A and gradient vector b = (b0, b1, b2, b3, b4, b5)
T

for affine motion model are computed by differentiating the squared
error e2x,i + e2y,i according to the Newton-Raphson (NR) method as
used in [6]. A and b consider only motion vectors vi with i ∈ W .
The updated affine motion parameters m+

a are computed as

Δma = (A−1b)T

m+
a = ma +Δma.

For perspective motion model, Hessian matrix P and gradient
vector c = (c0, c1, c2, c3, c4, c5, c6, c7)

T are computed for all mo-
tion vectors vi with i ∈ W . The new perspective motion parameters
m+

p are determined by

Δmp = (P−1c)T

m+
p = mp +Δmp.

MV-GME-NR stops its iterations if the maximal number of it-
erations Nit is reached or the difference for translational parameters
m2 and m5 is below threshold TNR,1 and for all other parameters
below TNR,2. We follow [6] by choosing thresholds as Nit = 5,
TNR,1 = 10−3, and TNR,2 = 10−5.

3. EXPERIMENTAL EVALUATION

We selected the global motion compensation (GMC) background
error measured as Y-PSNR in dB for comparing our proposed ap-
proach and other methods in the experiments. The background error
is determined by applying a mask that excludes foreground pixels if
moving objects are present in an image sequence. The GMC back-
ground error for a given set of estimated global motion parameters
is measured with original image sequences to exclude compression
related artifacts from the comparison besides the influence on the re-
sulting MVs. We used eight test videos, which are Stefan (352 ×
240), Foreman, Horse, Biathlon, and Allstars (each 352× 288) with
large and small moving objects and Monaco, Room3D, and Castle
(each 352× 288) without any moving objects.

The comparison considers plain pixel difference as baseline,
pixel-based GME using optical-flow [1] (OF-GME), and pixel-
based GME based on gradient descent [3] using feature tracking
for initialization (GD-GME-FT). For fixed block size (4 × 4 with
quarter-pel precision) and full-search block-matching (FSBM), other
MV-based GME methods such as robust least-squares solution using
a Tukey’s biweight M-estimator (Smolić) [5] and adaptive motion
model selection using Newton-Raphson method (Su) [6] are eval-
uated together with two MVF filters (CAS-Su, FLT-Su) [7, 9] as
preprocessing for Su’s method as examined in [7]. Our approach
uses least-squares solution (MV-GME-LSS) or Newton-Raphson
method (MV-GME-NR). Results for these methods were obtained
using motion vectors estimated for fixed block sizes as well as vari-
able block sizes and different quantization step sizes (QP). For the
latter case, the H.264/AVC reference encoder JM 16.2 was used with
prediction structure IPPP... and enhanced predictive zonal search
(EPZS) for motion estimation.

The results are shown as average background Y-PSNR values
in Tab. 1. Visual examples1 for MV-GME-NR are given in Fig.
2. Here, the motion vector field, the final weighting for perspec-
tive MV-GME based on Newton-Raphson method, and the motion
compensation background error are shown.

Table 2 compares computational costs2 for our proposed MV-
based GME methods using motion vector fields (QP30) from the
Stefan sequence. MV-GME-NR has less computational costs while
obtaining very similar background Y-PSNR values as MV-GME-
LSS. However, if motion vectors are not available from compressed
video then additional computational costs for block-matching mo-
tion (BM) estimation has to be considered for a combination of BM
with MV-GME methods.

1http://www.nue.tu-berlin.de/research/mvgme
2AMD OpteronTM processor 8354, 2.2 GHz, single core used
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Table 1. Average background Y-PSNR values in dB for 8 video sequences, for H.264/AVC videos also bitrates and Y-PSNR in dB are given

Stefan Foreman Horse Biathlon Allstars Monaco Room3D Castle

Methods with moving foreground objects only background

Pixel Difference 17.73 27.79 18.11 24.20 30.72 25.97 18.13 23.31

Pixel-based Global Motion Estimation

OF-GME [1] 29.60 37.09 23.09 31.83 42.55 40.91 33.42 36.49
GD-GME-FT [3] 30.44 36.81 27.14 37.30 41.20 41.02 39.29 36.51

Full-Search Block-Matching, 4× 4 fixed block size, quarter-pel, bicubic spline interpolation 9th order

MV-GME-LSS 29.93 38.04 29.04 38.72 42.27 39.64 36.58 36.87
MV-GME-NR 29.92 38.03 29.04 38.72 42.27 39.64 36.58 36.87

Smolić [5] 24.41 32.44 22.60 32.92 40.41 38.18 38.15 34.86
Su [6] 23.17 32.35 21.36 33.60 40.72 40.42 32.06 35.20

CAS-Su [7] 23.42 32.40 21.77 33.60 40.68 40.42 32.05 34.84
FLT-Su [9] 24.41 32.48 22.27 30.97 41.01 40.40 32.12 34.92

H.264 JM 16.2, EPZS block-matching, quarter-pel, QP24

Bitrate in kbit/s 2793 808 2820 822 533 844 1595 579
Y-PSNR in dB 39.45 39.60 38.32 40.84 40.54 39.54 38.61 39.84

MV-GME-LSS 30.41 37.71 32.92 38.82 42.51 39.59 35.84 36.97
MV-GME-NR 30.40 37.71 32.92 38.82 42.51 39.59 35.83 36.97

H.264 JM 16.2, EPZS block-matching, quarter-pel, QP30

Bitrate in kbit/s 1307 273 1129 339 193 258 590 182
Y-PSNR in dB 34.13 35.23 33.34 36.69 36.47 34.19 33.00 35.10

MV-GME-LSS 30.46 36.86 32.56 38.18 41.61 40.19 37.37 37.06
MV-GME-NR 30.46 36.86 32.56 38.19 41.61 40.18 37.37 37.06

H.264 JM 16.2, EPZS block-matching, quarter-pel, QP36

Birate in kbit/s 487 101 425 144 70 71 171 63
Y-PSNR in dB 28.78 31.36 29.25 32.94 32.44 29.34 27.91 30.90

MV-GME-LSS 30.48 34.71 27.38 35.03 36.55 36.89 37.75 35.61
MV-GME-NR 30.48 34.72 27.37 35.03 36.55 36.89 37.75 35.61

H.264 JM 16.2, EPZS block-matching, quarter-pel, QP42

Bitrate in kbit/s 163 50 156 68 26 28 61 30
Y-PSNR in dB 23.94 27.89 25.94 29.37 28.88 25.53 23.69 27.44

MV-GME-LSS 29.39 29.97 19.89 28.88 30.72 26.30 36.72 25.65
MV-GME-NR 29.39 29.98 19.89 28.88 30.72 26.30 36.72 25.65

Table 2. Computational costs per motion vector field for Stefan se-
quence (30 Hz, methods implemented in C/C++)

MV-GME
Method LSS NR

GME Time 18.06 ms 6.04 ms
GME per s 55.37 165.56

4. CONCLUSIONS

The proposed approach for robust MV-GME obtains results that are
as good as results from pixel-based GME or even better. The ap-
proach is highly robust against moving objects, fast camera motion,
and video compression related artifacts in a wide range of bitrates.
The approach works for different optimization techniques, selects
automatically affine or perspective motion model and is applicable
to tree-structured motion vectors for variable block sizes as used in
modern video codecs such as H.264/AVC.
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