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Abstract

Audio similarity matrices have become a popular tool in
the MIR community for their ability to reveal segments of
high acoustical self-similarity and repetitive patterns. This
is particularly useful for the task of music structure seg-
mentation. The performance of such systems however re-
lies on the nature of the studied music pieces and it is often
assumed that harmonic and timbre variations remain low
within musical sections. While this condition is rarely ful-
filled, similarity matrices are often too complex and struc-
tural information can hardly be extracted. In this paper we
propose an image-oriented pre-processing of similarity ma-
trices to highlight the conveyed musical information and re-
duce their complexity. The image segmentation processing
step handles the image characteristics in order to provide
us meaningful spatial segments and enhance thus the music
segmentation. Evaluation of a reference structure segmen-
tation algorithm using the enhanced matrices is provided,
and we show that our method strongly improves the seg-
mentation performances.

1 Introduction

Music structure segmentation aims at drawing the tem-
poral map of a music piece and is the core of many Mu-
sic Information Retrieval (MIR) applications such as music
synchronization, music summarization, music transcription,
cover detection, score following, etc. A popular approach
for this task consists in visualizing the structure of audio
signals by means of an audio similarity matrix [2]. Such
a visualization indicates segments of high acoustical self-
similarity in the audio signal, and boundaries between mu-
sical sections within the music piece can then be retrieved.
Furthermore, segments of homogeneous acoustical infor-
mation or repetitive patterns can be detected within the mu-
sic piece and its structure can be explained.

Similarity matrices have thus become a popular tool in
the MIR community, and its introduction considerably im-

proved the music segmentation performances. However, the
assumptions on which it relies for the modeling of structural
parts are rather restrictive. For a good visualization of musi-
cal structures, the intrinsic acoustical properties of musical
sections must have very low- variance, whereas the acoustic
properties of two different segments should allow for dis-
crimination. Considering large-scale music collections, this
condition is rarely fulfilled and the complexity of similarity
matrices for some music pieces remains too high to allow
for their segmentation.

Some work have been proposed for matrix enhancement,
and strengthening of structural information in similarity
matrices. In [7], the authors propose to reduce the complex-
ity of the visualization by defining a contextual similarity
measure. Considering a larger observation horizon for the
measure of similarity, one favors the visualization of repet-
itive motives. However, while repetitions are highlighted,
the temporal resolution of sections boundaries is reduced. A
similar approach is used in [10] where dynamic features are
extracted by modeling the temporal evolution of the spec-
tral shape over a short time window to capture local timbre
properties. Varying the window size, authors derive simi-
larity matrices that either relate to short-term or long-term
structures. Finally, matrix transformations designed for the
particular properties of repeated elements in the similarity
matrices are proposed in [12]. The transformation aims
at reinforcing off-diagonals, and therefore facilitate repe-
titions detection.

Most of the approaches thus introduce a local model-
ing of audio features to enhance the measure of similarity.
While sections might be better characterized, boundaries
between sections are however blurred, which is prejudicial
to the segmentation performance.

In this paper, we propose an alternative approach for the
similarity matrix enhancement problem by considering it in
an image processing framework. The idea is to favor re-
gions of high self-similarity with image filtering techniques
that preserve the sharpness of boundaries. Musical objects
in the music piece, as audio segments parameterized and
embedded in a similarity matrix, indeed relate to visual ob-
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jects that can be segmented in the image formed by the sim-
ilarity matrix. Image processing thus seems to be a rather
natural approach for the study of similarity matrices, and
techniques for audio segmentation with mean of similarity
matrices such as in [3] were already inspired from the image
segmentation research. Authors defined the pattern of an
ideal boundary in the similarity matrix and used visual pat-
tern matching techniques to segment the audio. We propose
here to apply further visual object segmentation techniques
to enhance the structure visualization and thus improve the
performance of the segmentation.

The approach is as follow. We consider similarity ma-
trices as intensity images. These image representations of
musical information are processed exploiting their low pass
frequencies as well as their spatial geometric structures and
are segmented. We show that these segmentation masks can
highly discriminate musical structural parts. Thus the orig-
inal similarity matrix is enhanced using this information,
yielding a representation of the original audio data where
structural parts are strengthened.

In the following section the similarity matrices are de-
scribed, the image processing framework and the matrix en-
hancement are presented. In section 3 we show the benefits
of our approach for the task of structure detection in music
pieces and in section 4 we conclude this paper and discuss
about further work for image-oriented processing of audio
similarity matrices.

2 Enhancing Similarity Matrices

In this section we briefly introduce the kind of similarity
matrices we are working with. We will then present the
image processing tools we use to generate a segmentation
mask that reinforces the structural information.

2.1 Similarity Matrices

2.1.1 Audio Features Extraction

For a good visualization of musical structures, it is needed
to extract acoustic properties that may distinguish musical
sections within a music piece. Studying music perception,
Bruderer showed in [1] that boundaries between structural
parts of a song are mainly determined by a combination
of changes in timbre, tonality and rhythm. Popular audio
features for computing similarity matrices are thus the Mel
Frequency Cepstral Coefficients (MFCC’s) for the descrip-
tion of timbre, and the Chroma features to embed harmonic-
related properties of sounds. In this paper, similarity matri-
ces shown in the examples were computed on the MFCC
features. In order to contain the size of matrices in a rea-
sonable range, features are sampled at 4Hz. Features are
also normalized to zero mean and unit variance.

2.1.2 Similarity Matrix Computation

After parametrization of the audio, the similarity between
each signal frame is measured and embedded in the self
similarity matrix S. Each element S(i, j) is defined as the
distance between the feature vectors vi and vj , extracted
over frames i and j. The cosine angle is used as a similarity
measure :

d(vi, vj) =
< vi, vj >

||vi||||vj ||
(1)

An exponential variant of this distance is used to limit its
range to [0, 1] :

de(vi, vj) = exp(d(vi, vj)− 1) (2)

2.2 Image Processing

Image segmentation is the problem of partitioning an im-
age into regions. Depending on the application, the seg-
mentation algorithm can be based on various image fea-
tures such as color, edges, texture and shape. In this case,
the properties of the similarity matrices images are low fre-
quency rectangular shape formations distorted by high fre-
quencies noise, existence of off-diagonals and repetitions of
various patterns. Based on these properties, we are going to
exploit the existence of low/high frequencies, maintaining
the edges, and try to detect homogenous regions of the sim-
ilarity matrix image that relate to musical objects.

We consider the similarity matrix as an intensity image.
The image segmentation algorithm applied on the similar-
ity matrix image is based on [5] and is described as follow:
Smoothing of the diagonal, anisotropic filtering, threshold-
ing and morphological post-processing.

2.2.1 Pre-processing of the images

The elements on diagonal of a similarity matrix are
S(i, i) = 1, providing no useful information for the scope
of image segmentation. Thus, the diagonal is smoothed to
avoid connecting the objects on it and regarding them as one
unified object after the low pass filtering. This is realized by
replacing the values on the diagonal of the similarity matrix
with the average value of the six neighboring positions.

For maintaining the image’s major features, such as
edges and corners, Perona and Malik made a significant
contribution in the area of noise filtering by proposing a
nonlinear diffusion algorithm [13] . Anisotropic diffusion
filtering provides smoothing of intra-region areas prefer-
entially over inter-region areas, thereby providing a good
prospective for removing unwanted noise and preserving
edges. The basic idea behind anisotropic diffusion is to
evolve a family of smoothed images St = S(i, j, t) from
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an initial noisy image S0 = S(i, j) converging to a solution
of the partial differential equation

St = div(g(|∇S|)∇S) = g(|∇S|)∆S +∇g · ∇S (3)

The diffusion coefficient function g(|∇S|) is selected in
this particular application to favor wide regions over smaller
ones [13], thus it is selected as:

g(|∇S|) = 1

1 + (|∇S| /K)2
(4)

where K is a constant that controls the sensitivity of the al-
gorithm to objects’ edges.

2.2.2 Segmentation mask generation

After filtering, the similarity matrix image is binarized. The
Otsu thresholding [8] is employed effectively, since the im-
ages have unimodal histograms. Following, morphologi-
cal operations [14] are performed, for refining the binary
masks. Morphologic processing considers close sets and
exploits the geometric structure of them to remove small
outlier regions (open operation) and closing small holes in-
side the segments (close operation). Fig. 1 shows an ex-
ample of such a segmentation mask computed for the song
Help! by The Beatles. Musical parts of the song (intro, A1,
B1, A2, B2, A3, B3, outro) are also annotated on the matri-
ces.

Elements of high similarity in the original matrix form
compact regions in the mask. On the other hand, morpho-
logical operators are able to remove regions that mainly
consisted in dissimilarity. Musical parts form therefore
coherent and distinguishable objects in the segmentation
mask. We were thus able to provide a much sparser image
representation of the audio in which the musical structure is
clearly enhanced.

(a) Original Matrix (b) Segmentation Mask

Figure 1: Original Similarity Matrix S (a) and the obtained
segmentation mask M (b)

Figure 2: Enhanced similarity matrix Se with mean of the
segmentation mask

Figure 3: True positive rate vs false positive rate for differ-
ent values of K

2.2.3 The Parameter K

The parameter K controls the sensitivity of the algorithm to
objects’ edges and should thus be carefully chosen. We ran
a small experiment on our dataset (see section 3.3) for eval-
uating the quality of the segmentation masks for different
values of K. The groundtruth mask is generated with mean
of the annotated audio segmentation. Each structural part is
thus displayed as a block in the mask. The estimated and
groundtruth masks are then compared using the true posi-
tive and false positive rates (see Figure 3).

In order to have a good compromise between the cov-
erage of the structural parts (true positive rate) and over-
segmentation (false positive rate) we set the value of K to
40. Indeed, groundtruth masks are generated from a rough
annotation of the audio data and do not account for dissimi-
larity regions within structural parts. They thus shouldn’t be
taken as the ideal masks. However, our masks should con-
tain as less energy as possible in non-structural regions. Set-
ting K to 40 we are still able to cover 50% of the groundtruth
masks while keeping the false positive rate under 30%.
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(a) Original Matrix (b) Segmentation Mask

Figure 4: Similarity matrix for the song Everybody is trying
to be my baby performed by The Beatles (a) and the corre-
sponding segmentation mask (b)

2.2.4 Matrix Enhancement

As shown above, the segmentation mask contains very rele-
vant information regarding musical objects in the original
image. It is therefore very tempting to directly segment
the objects defined by the mask for further audio process-
ing. However, the segmentation mask is binary and even
though indicating meaningful regions, it loses information
about the similarity of the structural part with itself. In other
terms, temporal evolution of similarity within the parts is
lost. The binarization can be prejudicial to the description
of music pieces and to the final application. In order to
maintain this temporal information, we consider the seg-
mentation mask as a weighting matrix for the enhancement
process. Elements in the original matrix S that were re-
tained in the mask M are multiplied by a certain weight
w, whereas unretained elements remain unchanged. In the
resulting matrix Se, regions of musical interest are strength-
ened and the variation in similarity levels is kept.

Se = S · (w − 1) · (M+O1) (5)

where Se and M are the enhanced similarity matrix and the
mask respectively. O1 is a matrix of the same size as S
whose elements all equal to one. It ensures that the orig-
inal matrix information S will be retained. w is a scalar
that weights the elements of the segmentation masks in the
original similarity matrix.

Figure 2 shows the final enhanced matrix for our exam-
ple using a weight of 3.

2.2.5 Interpretation for the task of structure segmen-
tation

Among the proposed similarity matrix based structure anal-
ysis methods, two definitions of structure are distinguished
in [11]: the state representation and the sequence represen-
tation. For the state representation, musical sections are as-

(a) Original Matrix (b) Segmentation Mask

Figure 5: Similarity matrix for the song Think for your
self by The Beatles (a) and the corresponding segmentation
mask (b)

sumed to be rather self-similar and therefore form blocks
in the similarity matrix. It is the case for the music piece
example shown in figures 1 and 2. And the matrix enhance-
ment clearly strengthened the state representation. We show
an other example of a well defined state representation in
Figure 4. The song example is Everybody is trying to be
my baby performed by The Beatles. Musical sections are
very homogenous in timbre in the piece, thus yielding well-
defined structural blocks in the similarity matrix. In that
case the segmentation mask perfectly retains musical sec-
tions and discards regions of dissimilarity.

The sequence representation on the other hand consid-
ers series of frames that are repeated over the music piece,
frames within a section not necessarily being similar. Struc-
ture is then displayed in the similarity matrix by dominant
repetitive motives on the off-diagonals. For audio material
that fits the sequence representation and as shown in Fig-
ure 5, our enhancement processing is not adequate yet. In-
deed, while segments represented as states are retained in
the segmentation mask, most of the sequence motives on
the off-diagonals are discarded. Image segmentation tech-
niques that fit the sequence representation should be con-
sidered in further developments.

3 Structural Segmentation

Structural segmentation of music pieces aims at extract-
ing basic structural parts such as verse and chorus. Many
of the proposed approaches for this task are based on a seg-
mentation of similarity matrices [9]. In order to evaluate
the pertinence of our matrix enhancement method, we will
compare in this section the performance of the structure de-
tection algorithm described in [4], using standard similarity
matrices and enhanced matrices.
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3.1 Approach

The structure segmentation proposed in [4] detects musi-
cal sections in the similarity matrix by its factorization with
the Non-negative Matrix Factorization (NMF, [6]) tech-
nique. Authors show that if the musical structure is dis-
played as a state representation in the similarity matrix, mu-
sical sections can easily be modeled and classified over the
dimension of such a factorization. We therefore hope that
our enhancement approach, by strengthening the state rep-
resentation, will also improve the performance of the struc-
ture segmentation.

To illustrate the NMF-based structure segmentation ap-
proach, we consider the similarity matrix S (n× n) for the
song Help by The Beatles. After its NMF decomposition of
rank r, S can be written as:

S ≈WH (6)

with W (n× r) and H (r×n) the two non-negative matrix
factors that best estimate S.

Each element sij of S can be written as:

sij ≈
r∑

k=1

W(i, k)H(k, j) (7)

To show how structural parts can be discriminated with
such a decomposition, we perform the factorization of S,
and set the rank of decomposition to 2, the music piece hav-
ing two main structural parts. We can display the contribu-
tion of each dimension of the factorization considering the
matrices Dk :

Dk = W(:, k)H(k, :) (8)

D1 and D2 for our song example are shown in Figure 6,
using the original similarity matrix in (a), and the enhanced
matrix in (b). In order to show the correlation between the
NMF dimensions and the structural parts, we also annotated
the segments A and B that are repeated over the song.

Decomposition of the original matrix yields a reasonable
separation of the two parts. Nevertheless, the separation is
not complete, and both dimensions of the NMF contain en-
ergy in regions corresponding to the two parts. Decompos-
ing the enhanced matrix yields a much sparser and preciser
separation of the structural parts. This is of great help for
the structure detection step. Indeed, the sparser the decom-
position is, the preciser is the structure clustering.

3.2 Structure explanation

Boundaries between musical sections are first retrieved
in the similarity matrix with mean of the audio novelty score
[3]. Similarity between potential musical sections is then

(a) 2nd order NMF Decompositon of the original Matrix

(b) 2nd order NMF Decompositon of the Enhanced Matrix

Figure 6: Separation of structural parts of the song Help by
The Beatles with mean of the NMF decomposition of the
original matrix (a), and of the enhanced matrix (b)

measured in the NMF decomposed matrices and a hierar-
chical clustering is applied to merge segments belonging to
the same section together.

3.3 Evaluation

For performance evaluation of the proposed algorithm,
we considered the album Help! by The Beatles (14 songs)
and its annotation in the TUT Beatles1 dataset. For each
song, the corresponding similarity matrix S, segmentation
mask M and enhanced similarity matrix Se are computed.

We compare the performance of the structure analysis
using the reference algorithm [4] on the original similarity
matrices (Reference), the structure segmentation incorpo-
rating binary segmentation mask only (Proposed 1) and the
structure segmentation algorithm using the enhanced ma-
trices obtained with different weights (Proposed 2). The
pairwise F-measure (F), Precision (P) and Recall (R) are
employed for the performance evaluation. The mean F, P
and R for all 14 songs for the various scenarios are reported
in table 1.

Introducing enhanced similarity matrices clearly im-
proved the over-all performance of the structure detection,

1http://www.cs.tut.fi/sgn/arg/paulus/structure.html
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Algorithm F P R
Reference [4] 63.5% 64.7% 65.7%
Proposed 1 64.8% 62.5% 69.5%
Proposed 2 (w = 2) 65.0% 61.7% 72.3%
Proposed 2 (w = 3) 66.9% 63.4% 74.0%
Proposed 2 (w = 4) 64.3% 62.1% 71.1%
Proposed 2 (w = 5) 63.8% 62.0% 69.9%

Table 1: Performance of the proposed structure detection
algorithms against the state-of-the-art algorithm described
in [2].

gaining up to 3.4% in terms of F-measure. While the pre-
cision is not increased but remain in the same range as the
reference, we achieve much better recall rates (up to 8.3 %)
in any of the proposed cases. This results in increasing the
F-measure, which is the harmonic median of precision and
recall.

The strong increase in the recall rates means that our pro-
posed algorithm deals better with over-segmentation issues.
Indeed, change of instrumentation within structural parts of-
ten leads to a division of parts in a set of sub-segments. As
structure can be explained at several hierarchical levels, this
does not affect the general quality of the estimated structure
as long as sub-segments are affected relevant labels. The
results also confirm that it is not worth using the binary seg-
mentation mask alone for the analysis.

4 Conclusion and Perspectives

In this paper we have presented an image-oriented pre-
processing algorithm for audio similarity matrices enhance-
ment. By strengthening structural information in the origi-
nal matrices, we reduce the complexity of the structure visu-
alization, and the discrimination of musical sections is im-
proved. Evaluation shows that this approach consistently
improves the performances of the music structure segmen-
tation. Especially, the enhanced matrices seem to cope with
over-segmentation issues. The enhancement procedure is
however more appropriate for music pieces that fit the state
representation of structure. In further work, segmentation
of sequence representations of structure should be included
in the framework. Evaluation over larger and more content
diverse databases will also be conducted. We believe that
audio visualization and its applications can strongly benefit
from an image-oriented analysis. Therefore, further image
analysis based on texture or shape features should be ap-
plied to similarity matrices in order to build robust repre-
sentations of audio signals. We will also consider to have
an hybrid approach and enhance either the state or sequence
representations with further modeling of audio features be-

fore the computation of the similarity matrix, and complete
the enhancement in our image processing framework.
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