
TEMPORAL TRAJECTORY FILTERING FOR BI-DIRECTIONAL PREDICTED FRAMES

Marko Esche, Andreas Krutz, Alexander Glantz, Thomas Sikora

Communication Systems Group, Technische Universität Berlin
Sekr. EN1, Einsteinufer 17, D-10587 Berlin, GERMANY

{esche, krutz, glantz, sikora}@nue.tu-berlin.de

ABSTRACT

In this work the application of a temporal in-loop filtering ap-
proach for B-frames in video compression based on the Tem-
poral Trajectory Filter (TTF) is investigated. The TTF con-
structs temporal pixel trajectories for individual image points
in the P-frames of a video sequence, which can be utilized
to improve the quality of the reconstructed frames used for
prediction. It is shown, how this concept can be adapted to
B-frames despite the fact that these already use temporal mo-
tion information to a great extent through the flexible choice
of reference frames and prediction modes. The proposed fil-
ter has been integrated into the H.264/AVC encoder using the
extended profile with hierarchical B-frames and was tested on
a wide range of sequences. The filter produces bit rate reduc-
tions of up to −4% with an average of −1.6% over all tested
sequences while also improving the subjective quality of the
decoded video.

Index Terms— Video compression, temporal in-loop fil-
ter, pixel trajectories, B-frames

1. INTRODUCTION

Noise reduction in reconstructed frames of a video sequence
has recently received a lot of attention, especially in the con-
text of the Wiener-based adaptive loop filter (ALF), which
was first described in [1]. In the state-of-the-art video codec
H.264/AVC the deblocking filter, as proposed by List et. al
in [2], serves the dual purpose of improving the subjective
quality of the decoded frames and reducing the bit rate of
the encoded video by improving the accuracy of the motion-
compensation carried out on the reconstructed frames. How-
ever, both the ALF and the Deblocking Filter use spatial
information only, i.e. they both lack temporal consistency,
which especially for the Deblocking Filter can introduce new
flickering artefacts. An attempt to add a temporal component
to the in-loop filter was described in [3], where a global mo-
tion model was used for this purpose. The TTF introduced
in [4], however, tries to overcome this particular problem
through the formation of individual temporal trajectories for
each pixel, which are used to reduce noise in the decoded
frame. This new adaptive filter has been shown to produce

bit rate savings of 5% on average over a large variety of
sequences for the H.264/AVC baseline profile. The concept
of temporal pixel trajectories was also used in [5]. In this
paper it is shown, how the concept of pixel trajectories can be
extended, so that it becomes applicable to the more general
case of hierarchical B-frames, too, and how the resulting filter
design needs to be adapted. The remainder of this paper is
structured as follows: Section 2 briefly revisits the concept
of temporal pixel trajectories and shows, how these can be
used for the denoising of bi-directional predicted frames. A
method for calculating suitable trajectories based on the mo-
tion vectors transmitted in the H.264/AVC extended profile
bit stream is described in Section 3. Section 4 provides details
on an implementation of the TTF and gives observed bit rate
savings and PSNR gains. The paper is completed by a short
summary and an outline of future work.

2. IN-LOOP FILTERING USING PIXEL
TRAJECTORIES

In the H.264/AVC baseline profile with an IPPP coding struc-
ture every pixel at location (xi, yi)

T in reconstructed frame
number i is associated with a motion vector (dxi, dyi)

T . The
corresponding image position in the previous frame i − 1 is
given by (

x1

y1

)
=

(
x0

y0

)
+

(
dxi(x0, y0)
dyi(x0, y0)

)
, (1)

where dxi(x, y) and dyi(x, y) are the x- and y-component of
the motion vector field of frame i. Through concatenation of
these motion vectors, a trajectory can be formed, whose j-th
pixel along the trajectory is subsequently given by(

xj

yj

)
=

(
xj−1

yj−1

)
+

(
dxi−j(bxj−1c, byj−1c)
dyi−j(bxj−1c, byj−1c)

)
. (2)

Having calculated the corresponding image positions over the
last n frames for a given pixel (x0, y0)T in the current frame,
an associated luminance component for each of these posi-
tions can be obtained. This results in the formation of a list of
previous luminance components Y t

0 , ..., Y
t
n−1 for every pixel

in the current frame i, where Y t
0 is identical to the luminance

component at location (x0, y0)T . We assume that image con-
tent in the pixels along the trajectory does not change and that

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 1669

any deviation of the pixel amplitudes is caused by additive in-
dependent white noise. Denoising can, therefore, be achieved
by computing the average of all Y-components along the tra-
jectory

Yopt =
1

N

N−1∑
j=0

Y t
j . (3)

The reconstructed luma sample Y0 in frame i is then replaced
by its filtered version Yopt.
When considering the H.264/AVC extended profile with hier-
archical B-frames, at most two motion vectors per sample at
location (x0, y0) in frame i are available: one for reference
list 0 ((dx0

i , dy
0
i)T) and one for reference list 1 ((dx1

i , dy
1
i)T)

respectively. The reference picture order numbers for both
lists shall be denoted by ref0i (x, y) and ref1i (x, y). Starting
from the current frame i the two reference locations in frames
ref0i (x, y) and ref1i (x, y) are then given by

(
x1

y1

)
=

(
x0

y0

)
+

(
dx0

i (x0, y0)
dy0i (x0, y0)

)
(

x2

y2

)
=

(
x0

y0

)
+

(
dx1

i (x0, y0)
dy1i (x0, y0)

)
. (4)

Both of these locations can potentially contribute to the list of
noisy luma samples, yielding components Y t

1 and Y t
2 , where

Y t
0 is the luma sample that is to be filtered in the current frame

i. Since both trajectory locations in equation 4 are also poten-
tially predicted from two reference frames each, an additional
four luma samples can be added to the list by concatenating
their respective motion vectors. For example the additional
trajectory locations derived from pixel (x1, y1)T are given by

(
x3

y3

)
=

(
x1

y1

)
+

(
dx0

r0(x1, y1)
dy0r0(x1, y1)

)
(

x4

y4

)
=

(
x1

y1

)
+

(
dx1

r1(x1, y1)
dy1r1(x1, y1)

)
, (5)

with r0 = ref0i (x1, y1), r1 = ref1i (x1, y1).

The resulting trajectory, which no longer follows a one-
dimensional path, but rather branches into several individual
trajectories at every new frame, is illustrated by Figure 1. As
in the case of the I-frame on the left, a trajectory can now con-
tain not just one but several pixels within a frame. Since only
one of these can represent the true location of the tracked
image point, methods are needed to stop the formation of
the trajectory. This problem will be adressed in Section 3.
One property that makes B-frames particularly suitable for
trajectory filtering, is the following: In the case of an IPPP
coding structure, a trajectory would be interrupted whenever
a certain image point is not visible in the previous frame. In
the case of B-frames an image point may even be tracked if
it is not visible for a number of frames, since both past and
future frames are part of the trajectory and several different

frame

frame frame

frame

frame

I

BB

b

P

Y t
0

Y t
2

Y t
5

Y t
6

Y t
4

Y t
3

Y t
1

i− 1 i + 1

i

i + 5i− 3

Fig. 1. Starting with a b-frame the trajectory for each pixel is
computed through the concatenation of motion vectors yield-
ing here a total of 7 luma samples along the trajectory.

trajectory paths may lead to the same location as illustrated in
Figure 1. Nevertheless, the concatenation of motion vectors
may not always result in true trajectories. Therefore, crite-
ria are needed to determine, when a trajectory needs to be
interrupted.

3. CONTROLLED TRAJECTORY FORMATION FOR
B-FRAMES

In order to enable both encoder and decoder to perform in-
loop trajectory filtering, a certain number of previous frames
together with their associated motion vectors need to be
stored. Since a hierarchical B-frame structure is considered,
eight past B-frames with their motion vectors for list 0 and
1 as well as the last four I- and/or P-frames are stored. This
ensures that even those B-frames, that have been directly
predicted from a P-frame, can have a trajectory of a length
greater then 1. To achieve good filtering results three thresh-
olds are used to control the trajectories formation, the first of
which has already been introduced and discussed in [4].

3.1. Absolute error along the trajectory

One indicator for a badly predicted trajectory can be a sud-
den change in the luminance component along the trajectory.
Using the difference value ∆Yj = |Y t

j+1 − Y t
j | between two

consecutive luma samples, a threshold

∆Yj ≤ TY (6)

can be used to differentiate between true and false trajectories.
Should the luminance difference be greater than a predefined
threshold 0 ≤ TY ≤ 7, then the trajectory for the current
sample is interrupted and no further luma samples are added
to the averaging process.

2011 18th IEEE International Conference on Image Processing

1670

Fig. 2. The BV metric gives the number of 4 × 4 blocks
surrounding the trajectories current location, whose motion
differs from the block through which the trajectory passes.
The location of the trajectory is marked in black, all blocks
with a different motion are grayed out.

3.2. Spatial motion consistency

A second threshold, that was also introduced in [4], tests
the spatial consistency of a motion vector that belongs to
the trajectory. As depicted in Figure 2 the block vote metric
BVj(xj , yj) calculates for any 4 × 4-block in frame j the
number of neighboring blocks with identical motion. This
metric can be interpreted as a measure of confidence for
the accuracy of the current motion vector. The trajectory is
consequently only continued, if

BVj(xj , yj) ≤ 8− TBV . (7)

In the context of the H.264/AVC baseline profile with an IPPP
coding structure this threshold yielded good results, when the
TTF was applied before the standard Deblocking Filter. How-
ever, the metric favours the filtering of pixels within fore-
ground objects or in the background, while pixels at object
boundaries will usually violate the threshold in equation 9.
In the implementation which will be described in Section 4,
the TTF is instead applied after the deblocking filter to al-
low greater flexibility. To enable comparison between motion
vectors that may even point to different reference frames, all
motion vectors (dx0

i , dy
0
i)T are scaled according to the refer-

ence frame they point to:

(dx0
i (x, y))′ =

dx0
i (x, y)

ref0i (x, y)− i

(dy0i (x, y))′ =
dy0i (x, y)

ref0i (x, y)− i
(8)

Since blocking artefacts often manifest themselves at object
boundaries, the trajectory is now only continued along a mo-
tion vector from list 0 when

BV 0
i (x, y) ≥ TBV, (9)

where BV 0
i (x, y) is the number of scaled neighboring motion

vectors for the 4 × 4-block surrounding location x, y, whose
x- or y-components differ from the current motion vector by a
variance of more than varBV = 0.1 or varBV = 0.5. It is sig-
naled in the bitstream, which of these two possible variances
is used. The functionality of the spatial motion consistency is
illustrated by Figure 3, which displays a section of the motion
vector field for list 0. After the scaling of the motion vec-
tors and with a predetermined exemplary threshold TBV = 3
(varBV = 0.1), the current pixel is identified as being part of

Fig. 3. left: The original motion vector field for list 0. All
macroblocks marked in gray refer to a reference frame that
has a greater temporal distance to the current frame than those
for all other macroblocks. right: After the scaling of the mo-
tion vectors, the BV threshold identifies the four macroblocks
in the lower left corner as belonging to the same object, while
the remaining macroblocks are part of the background.

an object boundary and the filtering along the current trajec-
tory is continued.

3.3. Temporal motion consistency

Since the block vote metric is now used to identify regions
where the filtering needs to be applied, a different method
is needed to identify motion vectors that correctly describe
the true motion of an image point. To achieve this, the tem-
poral consistency of the motion vectors along the trajectory
is considered. Again, the motion vectors are scaled using
equation 8. For any pixel point along the trajectory, the fil-
tering is only continued, if the euclidean difference between
the motion vector (dxi, dyi)

T for list 0 pointing to the cur-
rent trajectory location and the motion vectors (dx0

r0, dy
0
r0)T ,

(dx1
r0, dy

1
r0)T pointing to the next possible locations satisfy

the following threshold:√
(dx0

r0 − dxi)2 + (dy0r0 − dyi)2 < TTC. (10)

The same threshold 0 ≤ TTC ≤ 7 is also applied to all motion
vectors for list 1.

3.4. Derivation of the filter parameters

At the encoder, all possible combinations of the three thresh-
olds and all combinations with the two different motion vector
variances are tested iteratively. Each of these combinations
results in a different set of trajectories which also produces a
different filtered picture. Effectively, all of these can be calcu-
lated simultaneously reducing the computational complexity
to a single-pass process. The combination yielding the mini-
mum MSE compared to the original frame is signaled in the
bitstream using 10 additional bits per frame (3 bits per thresh-
old and 1 bit for the motion vector variance).

4. EXPERIMENTAL EVALUATION

The TTF has been implemented in C and integrated into
the H.264/AVC reference software JM 16. The resulting
encoder with both Deblocking Filter and TTF is shown in
Figure 4. The encoder settings are given in Table 1. Tests

2011 18th IEEE International Conference on Image Processing

1671

MC

ME

Buffer

(8 B−frames + MVs)

(4 I−/P−frames + MVs)

TTF

Choose

Prediction
Intra

Prediction

Intra

MVs

 FS

Deblocking

Filter

T QFi

F ′i−1

F ′i T−1 Q∗

Fig. 4. The proposed filter is integrated into the local decoder
loop at the encoder after the deblocking filter.

Prediction Structure hierarchical B-frames
GOP size 8
RD Optimization enabled
QPPSlice QPISlice + 1
QPBSlice QPPSlice + 2

Table 1. Settings used for the H.264/AVC Extended Profile.

have been carried out for QP 22 to 37 over a large variety
of MPEG test sequences. For each of these, BD-rate and
BD-gain have been calculated using the metric described in
[6]. A list of all sequences and their respective measures can
be found in Table 2. For sequences with large foreground

Sequence BD-rate ∆PSNR Resolution Frames
BlowingBubbles −0.99% 0.04 dB 416x240 500
BQSquare −2.26% 0.08 dB 416x240 600
RaceHorses −0.21% 0.01 dB 416x240 300
BQMall −0.34% 0.02 dB 832x480 600
PartyScene −1.28% 0.05 dB 832x480 600
RaceHorses −0.29% 0.01 dB 832x480 300
Vidyo1 −2.59% 0.09 dB 1280x720 500
Vidyo3 −2.07% 0.08 dB 1280x720 500
Vidyo4 −1.63% 0.06 dB 1280x720 500
BasketballDrive −0.38% 0.01 dB 1920x1080 500
BQTerrace −3.89% 0.08 dB 1920x1080 600
Kimono1 −1.15% 0.04 dB 1920x1080 240
ParkScene −2.39% 0.09 dB 1920x1080 240

Table 2. BD-rate and average PSNR gain for a variety of
MPEG test sequences (QP from 22 to 37).

objects (both RaceHorses sequences) the bit rate reduction is
around 0.3%. Nevertheless, the encoder performs better than
H.264/AVC for all sequences. Most importantly, good results
have been achieved for all HD-sequences. This is partly due
to the fact that the introduced overhead has little impact at
the data rates required for the transmission of HD content.
Moreover, the motion vector accuracy for these sequences is
generally better, since they were captured with frame rates of
50 or 60Hz. Figure 5 shows the average trajectory lengths
for the BQSquare sequence. IT also illustrates one advan-
tage of the TTF compared to simple B-frames: For 40%
of the pixels a trajectory with more than 2 luma samples is

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
ra

n
c
e

Trajectory length

Fig. 5. Average distribution of the trajectory lengths for the
BQSquare sequence (QP 27).

constructed, while a general B-frame averages two samples
at most. Exemplary frames for all sequences, the decoded
videos together with the associated RD-curves can be found
on the accompanying website
www.nue.tu-berlin.de/research/ttf-bframes.

5. SUMMARY AND FUTURE WORK

The proposed filter has been shown to produce good gains es-
pecially for high resolution sequences resulting in an overall
bit rate reduction of −1.6%. Due to the testing of various
threshold combinations the complexity of the encoder is in-
creased. Future work will therefore focus on deriving these
thresholds directly from the video content. In addition, inter-
actions between the deblocking filter and the TTF as well as
a combination with the ALF will be studied.

6. REFERENCES

[1] S. Wittmann and T. Wedi, “Transmission of post-filter
hints for video coding schemes,” in PCS, September
2007, pp. 81–84.

[2] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Kar-
czewicz, “Adaptive deblocking filter,” IEEE Transactions
on Circuits and Systems for Video Technology (TCSVT),
2003.

[3] A. Glantz, A. Krutz, M. Haller, and T. Sikora, “Video
coding using global motion temporal filtering,” in ICIP,
November 2009, pp. 1053–1056.

[4] M. Esche, A. Krutz, A. Glantz, and T. Sikora, “A novel
in-loop filter for video-compression based on temporal
pixel trajectories,” in PCS, December 2010, pp. 514–517.

[5] J.-R. Ohm, “Three-dimensional subband coding with mo-
tion compensation,” IEEE Transactions on Image Pro-
cessing, September 1994.

[6] G. Bjøntegaard, “Calculation of average PSNR differ-
ences between RD-curves,” ITU-T SG16/Q.6 VCEG doc-
ument VCEG-M33, Mar 2001.

2011 18th IEEE International Conference on Image Processing

1672

