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Abstract: Due to its high computational efficiency the Kanade Lucas Tomasi featuretracker is still widely accepted and
a utilized method to compute sparse motion fields or trajectories in video sequences. This method is made up
of a Good Feature To Track feature detection and a pyramidal Lucas Kanade feature tracking algorithm. It is
well known that the Good Feature To Track takes into account the Aperture Problem, but it does not consider
the Generalized Aperture Problem. In this paper we want to provide an evaluation of a set of alternative
feature detection methods. These methods are taken from feature matching techniques like FAST, SIFT and
MSER. The evaluation is based on the Middlebury dataset and performedby using an improved pyramidal
Lucas Kanade method, called RLOF feature tracker. To compare the results of the feature detector and RLOF
pair, we propose a methodology based on accuracy, efficiency and covering measurements.

1 INTRODUCTION

Motion based analysis of a video sequence is an im-
portant topic in computer vision and visual surveil-
lance. The KLT feature tracker (Tomasi and Kanade,
1991) still remains as a widely accepted and utilized
method to compute sparse motion fields or trajectories
in video sequences due to its high computational ef-
ficiency (Ali and Shah, 2007; Hu et al., 2008; Fradet
et al., 2009). The KLT tracker is based on a GFT
(Good Feature To Track) corner detector (Shi and
Tomasi., 1994) and the Lucas/Kanade local optical
flow method (Lucas and Kanade, 1981).

In the recent past several improvements of the Lu-
cas/Kanade method have been developed: Pyrami-
dal implementation (Bouguet, 2000) was proposed
to estimate large motions, parallelizing using the
GPU (Sinha et al., 2006) increases the runtime perfor-
mance drastically, gain adaptive modifications (Zach
et al., 2008) extend the robustness against varying il-
luminations and robust norms in association with a
adaptive region size (Senst et al., 2011) improve the
robustness against partial occlusion and non Gaussian
noise. Whilst the tracking by local optical flow has
been improved continually, the feature detecting is
still based on the GFT method. This leads to sev-
eral drawbacks. E.g. the GFT does not consider the
multi scale approach of the pyramidal Lucas/Kanade
implementation. Even the Lucas/Kanade local con-

stant motion constraint is not taken into account by
the GFT algorithm. In the recent decades feature de-
tectors were developed for feature matching methods,
e.g. SIFT (Scale Invariant Feature Transform) (Lowe,
1999), SURF (Speeded Up Robust Features) (Bay
et al., 2008) and MSER (Maximally Stable Extremal
Regions) (Matas et al., 2002). These techniques were
applied e.g. in stereo, SLAM (Simultaneous Local-
ization and Mapping) and image stitching applica-
tions.

In this paper, we investigate the usability of sev-
eral feature detectors related to local optical flow
tracking. The evaluation is based on the Middlebury
dataset (Baker et al., 2009). The dataset provides syn-
thetic and realistic pairs of consecutively captured im-
ages and the optical flow as ground truth for each
pair. We provide metrics for sparse motion estima-
tion. These metrics take into account the accuracy,
efficiency and the covering of the sparse motion field.

2 FEATURE DETECTION

In this section we briefly introduce the set of evaluated
feature detectors. Most of the detectors are designed
for feature matching, whose requirements differ from
the tracking with local optical flow. Feature matching
methods associate feature points of different images
by extracting descriptors from the detected feature lo-



cation. Thus the features provide a limited set of well
localized and individually identifiable anchor points.
Important properties are repeatability and invariance
against rotation, translation and scaling (Tuytelaars
and Mikolajczyk, 2008).

The local optical flow estimates the feature motion
by a first order Taylor approximation of the bright-
ness constancy constraint equation of a specified re-
gion (Lucas and Kanade, 1981). Thus it depends on
the appearance of vertical and horizontal derivatives
of the image. This is known as the aperture problem.
In addition it constrains that the specified region con-
tains one moving pattern. This extends the aperture
problem to the generalized aperture problem (Senst
et al., 2011). As a consequence important properties
of the patterns close to the feature points detected by a
feature detector are cornerness and motion constancy.

Good Features To Track: The GFT method (Shi
and Tomasi., 1994) is designed to detect cornerness
patterns. The Gradient matrixG is computed for each
pixel as:

G = ∑
Ω

[

I2
x IxIy

IxIy I2
y

]

(1)

with the intensity valuesI(x,y) of a grayscaled im-
age and the spatial derivativesIx, Iy for a specified
region Ω. The gradient matrix is implemented by
means of integral images forI2

x , I2
y and IxIy. Due to

the use of integral images the computational complex-
ity of the gradient matrix is constant and independent
of the size ofΩ. A good feature can be identified
by the maxima ofλ(x,y), the smallest eigenvalue of
G. Thus good features prevent the aperture problem.
Certainly strong corners appear at object boundaries,
where multiple motions are very likely. This leads to
the generalized aperture problem. Post processing is
applied by non-maximal suppression and thresholds
at q ·max(λ(x,y)), with q the cornerness quality con-
stant.

Pyramidal Good Features To Track: The PGFT
method is the pyramidal extension of the GFT
method. The pyramidal implementation is done by
up-scaling the regionΩ based on integral images.
That is more efficient than down-scaling the image.
For each scale the smallest eigenvalueλs(x,y) of the
corresponding Gradient matrix is computed. A good
feature can be identified by the maxima ofλ(x,y),
whereby:

λ(x,y) = max
s
(λs(x,y)) (2)

is the maximal eigenvalue of each scale.
Feature from Accelerated Segment Test:The

FAST (Rosten and Drummond, 2006) method is de-
signed as runtime efficient corner detector. Corners

are assumed at positions with not self-similar patches.
This is measured by considering a circle, whereIC
is the intensity from the centre of the circle andIP
and IP′ are the intensity values on the diameter line
through the center and at the circle, hence at opposite
positions. Thus a patch is not self-similar if pixels at
the circle look different from the centre. The filter re-
sponse is performed on a Bresenham circle and given
by:

C= min
P
(IP− IC)

2+(IP′ − IC)
2. (3)

Rosten and Drummond proposed a high-speed test to
find the minimum in computationally efficient way.

Scale Invariant Feature Transform: The
SIFT (Lowe, 1999) method provides features that are
translation, rotation and scale invariant. To achieve
this, features are selected at maxima and minima of
a DoG (Difference of Gaussian) function applied in
scale space by building an image pyramid with re-
sampling between each level. Focusing on speed the
DoG is used to approximate the LoG (Laplacian of
Gaussian). The local maxima or minima are found by
comparing the 8 neighbors at the same level. These
maxima or minima are compared to the next lowest
level of the pyramid.

Speeded Up Robust Features:The SURF (Bay
et al., 2008) are designed with a fast scale space
method using DoB (Difference of Box) filters as a
very basic Hessian matrix approximation. The Hes-
sian matrixH at each scale is defined as:

H =

[

Ixx Ixy
Ixy Iyy

]

(4)

whereIxx is the convolution of the Gaussian second
order derivative with the imageI . The DoB filters are
implemented by integral images, hence the computa-
tion time is independent of the filter size. The filter re-
sponse is defined as the weighted approximated Hes-
sian determinant, where local maxima identify blob
like structures. The scale space is analysed by up-
scaling the box filter, which is more efficient than
down-scaling the image, followed by a scale space
non-maximum suppression.

STAR: The STAR detector is derived from
the CenSurE (Center Surround Extrema) detec-
tor (Agrawal et al., 2008). As well as the SURF the
CenSurE is based on box filters. While DoB filters are
not invariant to rotation, Agrawal introduced center-
surround filters that are bi-level. The STAR feature
detector uses a center-surrounded bi-level filter of two
rotated squares. The filter response is computed for
seven scales and each pixel of the image. In contrast
to SIFT and SURF the sample size is constant on each



scale and is leading to a full spatial resolution at every
scale. Post processing steps are done by non-maximal
and line suppression. Features that lie along an edge
or line are detected due to the Gradient matrix, see
Eq. 1.

Maximal Stable Extremal Regions:The MSER
detector (Matas et al., 2002) is designed to detect
affine invariant subsets of maximal stable extremal re-
gions. MSER are detected by consecutivly binariz-
ing an image by a threshold. The threshold is applied
from the maximal image intensity value to its mini-
mal. At each step a set of regionsΦ is computed by
connected components analysis. The filter response
for each regioni is defined as:

qi = |Φi+∆\Φi−∆|/|Φi | (5)

where| . . . | denotes the cardinality andi ±∆ the re-
gion at ∆th lower or higher threshold level. The
MSER are identified by the local minimum ofq.

3 FEATURE TRACKING

The motion estimation of the detected features is per-
formed using RLOF (Robust Local Optical Flow)
method (Senst et al., 2011) which is derived from the
pyramidal Lucas/Kanade method (Bouguet, 2000).
Based on the spatial and temporal derivatives of a
specified regionΩ the RLOF computes the feature
motion using a robust regression framework. A ro-
bust redescending composed quadratic norm was in-
troduced to increase the robustness of motion estima-
tion compared to pyramidal Lucas/Kanade method.
To improve the behaviour at motion boundaries an
adaptive region size strategy is applied to decreaseΩ.
The regionΩ of a feature is decreased until the feature
is trackable or a minimal region size is reached. The
decision of being trackable is done by analysing the
smallest eigenvalueλ, see Section 2, and the residual
error of the motion estimates.

For the experiment the following parameters are
used: a minimal region size of 7× 7, a maximal
region size of 15× 15, the robust norm parameters
σ1/2 = (8,50), 3 levels and maximal 20 iterations.
The RLOF is performed bidirectional, thus incorrect
tracked features could be detect. We identify these
by checking the consistency of forward and backward
flow using a thresholdεd = 1:

||dI(t)→I(t+1)+dI(t+1)→I(t)||< εd (6)

whereI(t)→ I(t +1) denote the forward motion and
I(t +1)→ I(t) the reverse.

4 EVALUATION
METHODOLOGY

The Middlebury dataset (Baker et al., 2009) has
become an important benchmark regarding dense op-
tical flow evaluation. It provides synthetic and re-
alistic pairs of consecutively captured images. The
ground truth is given by optical flow for each pair. We
use the database to evaluate the sparse optical flow re-
sults of the features found by the respective detector
and tracked with the RLOF. We refine the evaluation
methodology of Bakeret al. (Baker et al., 2009) in
terms of accuracy, efficiency and covering measures.
For each algorithm and each sequence we record the
TD the set of detected features,TT ⊂ TD the set of
tracked trajectories with ˙xT the endpoint of each tra-
jectory as well as the runtime. The respective ground
truth motion is given by ˙xTGT the ground truth end-
point of each trajectory.

Accuracy Measures:A basic property is the ac-
curacy of the estimated tracks. The most commonly
used measure is the endpoint error (Otte and Nagel,
1994) defined by:

EE(ẋT) = ||ẋT − ẋTGT ||
2. (7)

The compact statistic of the EE is often only given by
the averages. Thus the measurement is affected by the
outliers. Bakeret al. proposed robust statistics by ap-
plying a set of thresholds to the error measurements.
This report is limited so we decide to use the Median
of endpoint errors (MEE).

Efficiency Measures:We measure the feature de-
tection runtimetD, which describes the computational
complexity of the detection method and the tracking
efficiency is defined as:

η =
|TT |

|TGT|
. (8)

In most cases the computational complexity of fea-
ture tracking is dominant. Therefore the tracking ef-
ficiency is an important measurement to trace meth-
ods detecting features which produce small MEE but
a large number of rejected trajectories. Finally thet
denotes the overall detection and tracking runtime.

Covering Measures:Compared with the evalua-
tion of a dense optical flow method the challenge of
comparing methods producing sparse motion fields is
not only to compare the outliers and the accuracy of
the resulting track, but also to compare whether all the
moving objects are assigned to tracks. In particular
it depends on the application. For example methods
as SLAM (Jonathan and Zhang, 2007) or GME (Tok



Figure 1: Ground truth optical flow and motion segments of
the Grove2 sequence (The optical flow is shown as color-
code).

et al., 2011) use trajectories of the background. In
these examples it is not critical if the set of trajecto-
ries does not include all foreground objects. But for
applications of motion based image retrieval e.g. ob-
ject segmentation or extraction (Brostow and Cipolla,
2006) all objects have to be covered by trajectories.
The covering measurementρ is motivated by measur-
ing the ability of the sparse motion field to represent
all different moving objects in a scene. At first the
ground truth is divided into a set of similar moving
regionsC by the color structure code segmentation
method. This algorithm (Rehrmann and Priese, 1997)
is modified to deal with a 2D motion field, see Fig-
ure 1. For each regionC the density is computed as
the quotient of the number of tracks|TT ⊂C| located
atC and the areaAC of the region. The covering mea-
surementρ is defined as the mean density.

ρ =
1
|C| ∑

|C|

|TT ⊂C|
AC

(9)

5 EVALUATION RESULTS

In this paper our goal is to provide a set of baseline
results to allow researchers to get a feel for a feature
detector that has a good performance on their specific
problem. For this purpose we evaluate the proposed
detection methods at the operating point of around
200 and 2500 feature points. We choose the operating
point of around 200 points to analyze the performance
of the feature detector with few feature points. Partic-
ularly in that case an ideal detector should provide a
high tracking performance, which indicates that the
features are not set to motion boundaries where they
are rejected more likely by the tracker. In contrast

Figure 2: Feature detection runtimetd related to the num-
ber of detected features for theGrove3sequence with VGA
resolution.

we want to analyze the performance regarding to the
coverage with a denser motion field of around 2500
feature points.

The results for all algorithms are shown in Table 1.
The experiments are performed on an AMD Phenom
II X4 960 running at 2.99 GHz. All feature detections
are computed on the CPU. The feature tracking is im-
plemented by the RLOF method running on a Nvidia
GTX 480 graphic device. The results suggest the fol-
lowing conclusions:

FAST: The FAST detector is designed as a high
speed runtime efficient corner detector, which our ex-
periments confirm. For the 640× 480 Grove3 se-
quence the features detection runtime takes only 2 ms.
Figure 2 shows thattd is nearly constant regarding to
the number of detected features. The plain parame-
terization is an additional advantage of this detector.
Summarizing the FAST detector is a very fast detector
for a huge set of features with a uniform distribution
regarding to the moving object.

GFT: The GFT is the third fastest detector in our
benchmark. The runtimetd is constant regarding to
the number of detected features except for a small
growing effort of sorting the features. For a small set
of features the GFT has the best coverage rate at the
Grove2andGrove3, where the texture is distributed
uniformly. At the Urban2 and Urban3 the detector
achieve the best MEE. However it becomes very in-
efficient when sequences include a large set of strong
edges lying at motion boundaries. These features can-
not be tracked. The GFT is a fast and reliable feature
detector at standard scenarios. But it should be used
with caution at sequences with occlusion and homo-
geneous objects.

PGFT: The PGFT improves the GFT in some se-
quence. E.g.Urban3, RubberWhaleandHydrangea,
there the tracking efficiency is decreased and the cov-
erage is increased. However, the benefit results in an



Grove2

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 35 98 2.3 0.113 0.42
PGFT 75 138 1.9 0.114 0.42

FAST 2 63 1.5 0.108 0.30

SIFT 240 304 3.9 0.082 0.26

SURF 156 215 5.1 0.116 0.12

STAR 18 76 8.7 0.152 0.22

MSER 63 124 4.8 0.094 0.18

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 37 112 2.0 0.069 1.03

PGFT 77 156 1.5 0.073 0.90

FAST 4 73 2.1 0.077 2.10
SIFT 508 588 3.1 0.090 1.04

SURF 280 355 2.3 0.079 0.72

STAR 24 98 2.6 0.082 0.84

MSER 142 215 2.2 0.071 1.62

Grove3

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 35 100 6.7 0.168 0.07
PGFT 74 135 8.0 0.165 0.07
FAST 2 64 6.2 0.147 0.03

SIFT 251 318 5.2 0.099 0.06

SURF 151 212 5.4 0.150 0.01

STAR 19 80 9.7 0.134 0.05

MSER 60 123 14.2 0.210 0.02

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 37 113 7.7 0.099 0.35

PGFT 77 158 7.3 0.097 0.34

FAST 4 77 9.6 0.138 0.59
SIFT 522 605 9.0 0.129 0.36

SURF 282 358 8.4 0.129 0.40

STAR 24 99 8.4 0.151 0.31

MSER 148 228 9.5 0.110 0.35

Urban2

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 35 98 11.8 0.084 0.12

PGFT 75 135 11.8 0.085 0.12

FAST 2 59 14.6 0.104 0.13

SIFT 257 320 4.4 0.103 0.04

SURF 158 219 8.1 0.177 0.19
STAR 19 78 18.6 0.207 0.05

MSER 54 115 16.2 0.154 0.07

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 36 117 12.2 0.103 0.64

PGFT 76 159 12.6 0.101 0.59

FAST 5 78 8.6 0.103 1.18
SIFT 506 584 11.8 0.104 0.62

SURF 286 364 10.3 0.126 0.83

STAR 24 99 10.7 0.105 0.63

MSER 104 173 9.8 0.107 0.62

Urban3

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 35 101 11.6 0.057 0.12

PGFT 74 134 9.5 0.062 0.19

FAST 2 59 11.3 0.063 0.21

SIFT 272 336 6.6 0.066 0.07

SURF 158 216 10.4 0.107 0.13

STAR 18 78 9.1 0.089 0.22
MSER 51 112 19.7 0.127 0.06

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 36 114 13.9 0.089 0.45

PGFT 77 161 12.2 0.085 0.48

FAST 5 76 9.1 0.071 0.82
SIFT 534 616 12.5 0.110 0.54

SURF 300 382 11.5 0.100 0.56

STAR 25 102 10.7 0.081 0.59

MSER 94 158 18.0 0.100 0.34

RubberWhale

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 26 77 2.2 0.055 0.06

PGFT 55 106 1.8 0.059 0.07

FAST 1 50 0.5 0.051 0.08

SIFT 183 233 1.1 0.129 0.08

SURF 113 162 4.3 0.180 0.11

STAR 13 62 3.3 0.127 0.10

MSER 51 101 3.0 0.075 0.24

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 27 89 3.2 0.057 0.99

PGFT 56 119 3.2 0.057 1.12

FAST 4 63 2.2 0.050 1.25
SIFT 414 476 1.9 0.057 0.78

SURF 237 299 3.3 0.066 1.06

STAR 18 74 2.0 0.057 0.94

MSER 93 148 2.3 0.051 0.54

Venus

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 18 65 0.6 0.205 0.16

PGFT 38 82 1.7 0.208 0.17

FAST 1 43 4.5 0.202 0.20

SIFT 128 171 1.5 0.188 0.17

SURF 80 122 2.5 0.185 0.13

STAR 9 52 3.3 0.210 0.21
MSER 33 76 4.8 0.183 0.16

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 20 76 6.6 0.225 1.40

PGFT 40 97 7.1 0.235 1.14

FAST 4 57 4.1 0.204 2.28
SIFT 267 319 5.3 0.202 0.83

SURF 218 276 4.9 0.202 1.67

STAR 12 60 4.2 0.227 0.75

MSER 62 108 5.6 0.189 0.67

Hydrangea

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 26 80 0.4 0.283 0.42

PGFT 54 106 0.0 0.306 0.42

FAST 1 50 0.5 0.252 0.25

SIFT 177 228 1.7 0.260 0.24

SURF 115 165 3.9 0.261 0.47

STAR 13 62 3.1 0.279 0.33

MSER 40 90 1.5 0.303 0.54

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 27 93 4.7 0.091 1.24

PGFT 57 124 3.6 0.090 1.27

FAST 5 68 2.6 0.271 3.30
SIFT 411 484 5.7 0.117 1.51

SURF 257 324 4.6 0.102 1.20

STAR 18 80 3.1 0.105 1.34

MSER 89 151 3.0 0.260 2.70

Dimetrodon

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 25 77 0.00 0.049 0.018

PGFT 54 104 0.00 0.057 0.017

FAST 1 49 0.00 0.046 0.017

SIFT 178 230 0.00 0.052 0.019

SURF 113 161 0.00 0.078 0.015

STAR 13 62 0.00 0.051 0.020
MSER 45 96 0.50 0.056 0.017

Method tD (ms) t (ms) η (%) MEE ρ (%)

GFT 27 92 0.5 0.138 0.23
PGFT 56 122 0.6 0.138 0.21

FAST 4 62 0.1 0.058 0.19

SIFT 375 438 1.0 0.085 0.16

SURF 247 310 0.4 0.102 0.21

STAR 18 75 0.6 0.119 0.17

MSER 59 109 0.2 0.059 0.05

Table 1: Evaluation results for the Middleburry dataset for approximate 200 feature points (left), 2500 feature points (right).
Measurements aretd detection time,t detection and tracking time,η tracking performance, MEE median of endpoint error
andρ mean feature density per motion segment.



increased detection runtime.
STAR: Due to the efficient implementation the

STAR method reaches the runtime ranking two. In
some special sequences asVenusor Urban3 it gets
good covering performance with a low feature set.
But generally the performance of the STAR is below
average.

SIFT: As shown in Figure 2 the SIFT detector
runtime depends on the number of features. It is the
slowest of the evaluation. But it shows good perfor-
mance within a low feature set. This method reaches
the best MEE results atGrove2andGrove3and the
best tracking performance at the difficultUrban2and
Urban3. In our experiments the scale space analysis
of the DoG of the SIFT tends to detect less features
at object boundaries. Almost homogeneous regions
are also selected, e.g. the sky of theGrove3sequence
where tracking is still applicable. Though the set of
objects are not covered uniformly, this results into low
coverage. Summarizing the SIFT detector is a slow
feature detector with a high tracking performance at
sequences with few objects.

SURF: In our experiments the improved runtime
performance regarding the SIFT could be confirmed,
buttd is still high compared to the other detectors. Re-
lated to SIFT the SURF shows some improvements at
large sets of features in terms of tracking performance
and accuracy. But FAST and GFT are still superior at
large feature sets.

MSER: The MSER is the only method based on
segmentation instead of finding features using first
or second order derivatives. In our experiments we
could observe that features are less likely detected at
object boundaries e.g. in theRubberWhalesequence
features are detected in the center of the fence holes
instead of their corners. Considering the generalized
aperture problem this is an important benefit. But it is
not reflected in the results of the whole dataset, where
the MSER detector achieve average results. Even at
theVenussequence it performs the best MEE results.

This sequence is also a challenging sequence for
the GFT because it mainly consists of homogeneous
objects. Most of the cornerness regions are distributed
at the object boundaries. Thus MSER and also the
scale space detector SIFT and SURF achieve good re-
sults. That leads to the conclusion that a region based
or a scale space based approach would be attractive to
improve the GFT method.

6 CONCLUSION

In this paper we evaluate different feature detec-
tors in conjunction with the RLOF local optical flow

method. While the state-of-the-art KLT-Tracker oper-
ates with the GFT detector, our goal is to provide a set
of baseline results for alternative feature detectors to
allow researchers to get a sense of which detector to
use for a good performance on their specific problem.
To compare the resulting sparse motion fields we pro-
pose a methodology based on accuracy, efficiency and
covering measurements. The benchmark is performed
on the Middleyburry dataset, which provides a set of
consecutively captured images and the corresponding
dense motion ground truth.

We observe that the efficient performing algorithm
is the FAST approach. With a runtime of about 3 ms
for a VGA sequence and an overall good performance
for the tracking efficiency, median endpoint error and
coverage it outperforms the standard GFT detector.
For standard scenarios i.e. uniform texture distribu-
tion the GFT is a fast and reliable feature detector.
From the results given by the evaluations we conclude
that for specific sequences, e.g. sequences includ-
ing homogeneous objects, where the texture distribu-
tion concentrates on object boundaries, there is still
room for improvements. Limited advantages shows
the PGFT but also SIFT and MSER shows enhanced
performance under these conditions. Furthermore an
improved GFT method could benefit from the scale
space analysis of the SIFT or the region based ap-
proach of the MSER.
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