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Abstract—Gaussian mixture models have been extensively
used and enhanced in the surveillance domain because of
their ability to adaptively describe multimodal distributions in
real-time with low memory requirements. Nevertheless, they
still often suffer from the problem of converging to poor
solutions if the main mode stretches and thus over-dominates
weaker distributions. Based on the results of the Split and
Merge EM algorithm, in this paper we propose a solution
to this problem. Therefore, we define an appropriate splitting
operation and the corresponding criterion for the selection
of candidate modes, for the case of background subtraction.
The proposed method achieves better background models than
state-of-the-art approaches and is low demanding in terms of
processing time and memory requirements, therefore making
it especially appealing in the surveillance domain.

Keywords-Background subtraction; Gaussian mixture mod-
els; Video surveillance

I. INTRODUCTION

The detection of change is a low-level vision task used

as a first step in many computer vision applications in

order to reduce the computational load of further processing

steps as object detection, object tracking and scene analy-

sis. Therefore, the results obtained at this first processing

step are of crucial importance for the success of higher-

level tasks based on them. Background subtraction is a

frequently adopted approach, especially in static camera

setups, aiming to accomplish the task of change detection.

Basically, background subtraction algorithms use a model

of the static scene, the background model, in order to

distinguish between background and foreground, i.e. units

of relevant change, in video sequences.

There have been many different proposals for the task

of background subtraction [1], [2]. Among them, Gaussian

Mixture Models (GMMs) [3] have proven their outstanding

suitability in the surveillance domain because of their ability

to achieve many of the requirements of a surveillance

system, e.g. adaptability and multimodality, in real-time with

low memory requirements. GMMs model the history of each

pixel by a mixture of K Gaussian distributions, which are

updated by means of an Expectation Maximization (EM)-

like algorithm.

The method in [3] has been enhanced in many directions.

In [4] the use of a negative prior evidence was introduced in

order to discard the components that are not supported by the

data, therefore being able to constantly adapt the number of

components of the mixture used for each pixel. In [5] the use

of an adaptive learning rate calculated for each Gaussian at

every frame was proposed, therefore being the convergence

rate improved without compromising the model stability.

Recently, in [6], a windowed weight update scheme, which

is also suitable for a hardware implementation, was proposed

to further reduce execution time. A comprehensive study of

the original method and its derivations can be found in [7],

where the authors gather the improvements that have been

published in over 150 papers.

The EM [8] algorithm is a general approach used to iter-

atively compute maximum likelihood estimates for models

with latent variables. However, due to its greedy nature,

the EM algorithm is sensitive to initialization when fitting

finite mixtures, thereby suffering from two main problems:

singularities and local maxima. In [9], split and merge

operations were proposed in order to overcome the local

maxima problem, when fitting mixture models to stationary

distributions.

The EM variant used to update GMMs for the task of

background subtraction may also converge to local maxima

if the main mode stretches, thus over-dominating weaker

distributions. As a consequence, detection results decline.

Following the same guiding principle as in [9], in this paper

we propose to split over-dominating modes. Therefore, we

derive an appropriate splitting operation and the correspond-

ing criterion for the selection of candidate modes for the

background subtraction approach, i.e., for the case when the

underlying distribution is non-stationary. The selection crite-

rion is based on a novel adaptive variance controlling value,

which is also used in order to properly initialize new created

modes. In Section II we thoroughly explain the proposed

method. In Section III we present some experimental results,

showing that our method leads to more accurate models of

the background. Section IV concludes our paper.

II. GMM BASED BACKGROUND SUBTRACTION

A. State of the Art

State of the art GMMs follow the formulation of Stauffer

and Grimson [3], thereby modelling the history of each pixel

by a mixture of K Gaussian distributions. The probability of
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observing a given pixel value Xt at time t is estimated as:

P (Xt) =

K∑
k=1

ωkN (Xt, μk,Σk) (1)

where ωk are the weights, and N (Xt, μk,Σk) is a normal

density of mean μk and covariance matrix Σk, which is

assumed to be the diagonal matrix σ2
kI . The components

are sorted according to their relevance and the background

model is approximated by the first B components such that

B = argmin
k

(
B∑

k=1

ωk > T

)
(2)

where B ≤ K and T is a predefined threshold indicating the

minimum portion of the data that should be assumed to be

background. The model is continuously adapted by means

of an EM-like algorithm, usually adopting a winner-takes-all

update strategy. This means, that only the parameters of the

selected matching mode are updated at a time. The matching

mode is selected by computing the distance of the observed

pixel value Xt to the modes of the model in a descendant

order and assuming the first mode m which distance is lower

than a given threshold τ to be the best match. If none of the

available modes matches the current pixel value Xt, a new

mode is created with Xt as its mean, a default value for the

variance and a low prior weight. If none of the modes in the

model is free, this new created mode replaces the one with

the lowest prior.

Although the winner-takes-all updating has become a

de facto standard for efficiency reasons, it falls into the

trap of allowing some Gaussians to stretch, especially in

crowded environments, therefore over-dominating weaker

ones. This pitfall can be even emphasized if new modes

are not initialized with adequate parameters. We propose

to overcome this problem by introducing a rule to split

stretching modes, which is based on the estimation of a novel

adaptive variance controlling value. This value is also used

in order to properly initialize new modes.

B. Proposed Method

Our proposed method follows the standard formulation of

GMMs, incorporates some of the recently proposed enhance-

ments and further improves existing methods by properly

initializing new modes and avoiding over-dominating modes

by means of a splitting rule. For every new frame, the GMM

corresponding to each pixel is updated as follows:

ωk,t = (1− α)ωk,t−1 + αMk,t − αcT (3)

where k = 1 . . .K, Mk,t is a binary function with value 1

for the matched mode and 0 otherwise, and cT is the bias

introduced by [4] to select the number of modes needed to

describe each pixel; furthermore:

μm,t = (1− ρm,t)μm,t−1 + ρm,tXt (4)

σ2
m,t = (1− ρm,t)σ

2
m,t−1 + ρm,tδ

T
m,tδm,t (5)

where m ∈ {1 . . .K} is the matched mode, δm,t =
(Xt − μm,t) and ρm,t is a learning rate calculated individ-

ually for each mode as introduced in [5]:

ρm,t =
1− α

ηm,t

+ α (6)

where ηm,t is a variable used to count the number of

observations for each mode. ηm,t is set to 1 when a mode is

created and consecutively incremented when the parameters

of the mode are updated. Therefore, the parameters of

recently created modes are updated approximately as based

on sufficient statistics (ρm,t ≈ 1/ηm,t) while older modes

are updated in a recursive fashion (ρm,t ≈ α). We chose

this kind of learning rate because of its ability to provide

fast convergence at early learning stages while guaranteeing

the same speed of learning for every mode throughout

the whole system. Observe that in the update equations

of [4] ρm,t = α/ωm,t, therefore depending the update of

each mode on the whole GMM instead of on its age. By

ensuring the same kind of convergence along the whole

system, feedback based systems as proposed in [10] and

more recently in [11] can be more reliably build upon the

background model. After updating the parameters of each

matched mode, we check if the splitting rule as defined in

section II-B2 should be applied.

If none of the available modes matches the current pixel

value Xt, a new mode is created as explained in the next

section.

1) Initialization of New Modes: New modes represent ob-

servations that were not contained in the model. Therefore,

they are created with a low prior weight, a mean equal to

the value Xt of the observation and an initialization value

for the variance, which is adaptively computed as explained

in the following.

The variance term of each mode accounts for the variation

of the values corresponding to the given distribution. This

variations are introduced by the camera noise, the kind

of surface and the kind of object (moving objects usually

exhibit a higher variance than static ones). Correctly initial-

izing this parameter is of central importance since it has a

significant implication on the behaviour of the model; too

low a value may lead the model to over-fit some boundary

of the feature space, while a too large value may lead the

model to under-fit the underlying distribution.

When starting the system, the background model for each

pixel has to be initialized. Therefore, we use the observed

value at each pixel as its mean value and make a guess

for the initialization of the variance parameter. To do that,

we use the two first frames and compute for each pixel the

deviation from the first to the second frame (Xt=1, Xt=2).

We assume that most of the pixels in consecutive frames,

respectively, belong to the same distribution. Furthermore,
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let us assume that most of the pixels belong to the back-

ground and can, therefore, be described by Gaussian distri-

butions N (μ,Σ) with similar covariance matrices σ2
b I . If

our assumptions hold, then the distribution of the deviations

is also Gaussian N (0, 2σ2
b I
)
. Therefore, we can use the

median of the absolute deviations med to robustly estimate

the standard deviation of the former distributions as:

σ̂b =
med

0.68
√
2

(7)

and use σ̂b to initialize our background model.

A similar method was used in [12] in order to estimate

the bandwidth of the kernel for each pixel independently.

In our estimation, we extrapolated the computation to the

frame level by assuming that most of the pixels belong

to the background. While this is certainly not always the

case, the only consequence of including some foreground

pixels in this computation would be an over-estimation of

the variance corresponding to background pixels. The higher

the number of moving objects in the scene, the higher the

over-estimation. In practice, this does not affect much further

detection results since, after this first estimation, the variance

of each pixel is individually updated to match the underlying

distribution. As we may show in the experimental section,

our method converges to appropriate values even if this first

estimation drifts because of violation of our assumptions.

Further modes are initialized using the value σi,t, which

is set equal to σ̂b at system initialization and continuously

updated so as to fit to the dynamic of the scene. In order

to update the value of σi,t, we observe the behaviour of the

system from two different perspectives. On one hand, we

consider the absolut deviation of the observations belonging

to background pixels Dabs
b := {|δp,m,t| : p ∈ Pb}, being Pb

the set of pixels belonging to the background, with respect

to σi,t. Following the arguments leading to eq. 7, σi,t should

have a similar value to the median of Dabs
b , but, since the

deviations in Dabs
b are affected by the value of σi,t at the

initialization time of the individual modes, this similarity is

conditioned on past values of σi,t. Therefore, we consider

on the other hand the absolute deviation of the observations

belonging to recently created modes Dabs
f := {|δp,m,t| : p ∈

Pf}, being Pf the set of pixels matching recently created

modes, with respect to σi,t, which provide us the instant

behaviour of the system. In order to evaluate the behavior of

the system from these two different perspectives, we define

two indicators, ν and σ̂f , and adapt the value of σi,t as

follows.

The first indicator, ν, is a counter of the number of

positions between the median of the absolute deviation of

the background pixels Pb with respect to their corresponding

matching modes m at time t and the position that would

occupy σi,t if considered among Dabs
b . That means, for every

new frame we set ν = 0 and for every updated background

pixel p ∈ Pb we compare the variance of the matched mode

σp,m,t with σi,t and set ν to:

ν =

{
ν + 1, if σp,m,t > σi,t

ν − 1, if σp,m,t < σi,t

(8)

The second indicator, σ̂f , is an approximation of the

median absolute deviation of recently created modes Pf .

To obtain this value, for every new frame we set σ̂f = σi,t

and for every new updated mode we compare the variance

of the mode σm with σ̂f and set σ̂f to:

σ̂f =

{
σ̂f + 0.1, if σm > σ̂f

σ̂f − 0.1, if σm < σ̂f

(9)

where a new updated mode is a mode with ηm,t < M , with

M being a small natural value usually set to 2. Eq. 9 is a

recursive approximation on the median of a serie of values

similar to the one proposed in [13].

After processing a whole frame we evaluate ν and σ̂f .

A negative value of ν means that the median of the devi-

ation of the updated modes is lower than the initialization

variance σi,t. Therefore, we conjecture that σi,t is too high.

Conversely, a positive value means that the median of the

deviation of the updated modes is higher than σi,t. In

this case, we conjecture that σi,t is too low. In order to

verify this conjectures, we use σ̂f . If the median of the

deviation of the recently created modes σ̂f is lower than

σi,t we can corroborate that σi,t is too high, otherwise

we can corroborate that it is too low. By impossing the

condition that both indicators ν and σ̂f agree, we are able

to lead σi,t converging to the median of the deviation of the

observations corresponding to background modes without

being conditioned by their respective initialization settings.

If σi,t is too high (ν < 0 and σ̂f < σi,t), we update its

value as:

σi,t+1 = σi,t +

(
σi,t

σ̂f

− 1

)
ν

N
(10)

where N is the total number of pixels in a frame. That

means, we decrease the value of σi,t according to σ̂f and ν.

If σi,t is too low (ν > 0 and σ̂f > σi,t), we update its

value as:

σi,t+1 = σi,t +

(
σ̂f

σi,t

− 1

)
ν

N

c

u
(11)

where c is the number of created modes and u the number of

updates. That means, we update the value of σi,t according

to σ̂f and ν. We introduced the factor c/u in (11) in order

to penalize higher values of σi,t, i.e., as the number of

created modes decreases and the number of updated modes

increases, σi,t grows slower.

This process is repeated for every new frame. Observe

that we use an approximation of the median absolute de-

viation of recently created modes in order to update σi,t.

Since new modes mostly correspond to moving objects,

302



we are deliberately setting σi,t slightly higher than the

expected variance of most of the modes corresponding to

background distributions, so as to be able to span a wide

range of possible underlying distributions. Since the variance

of each pixel is individually further updated, new modes

corresponding to background distributions are expected to

achieve appropriated variance values when they become part

of the background.

The value σi,t is also used to set a selection criterion for

the splitting rule as we explain in the next section.

2) Splitting Over-Dominating Modes: The Split and

Merge EM algorithm (SMEM) [9] was introduced in order to

escape from local maxima when fitting a GMM with a fixed

number of components to a given distribution. The intuition

behind it is that the Gaussian modes can be better distributed

over the feature space by simultaneously splitting a Gaussian

in an underpopulated region while merging two Gaussians

in an overpopulated region. The split and merge operations

are followed by a partial EM procedure and the full EM

procedure and repeatedly performed until convergence.

Our proposed splitting rule finds its roots in the SMEM

algorithm. Nevertheless, there are two important differences

that hinder a straightforward transfer of the SMEM al-

gorithm to the background subtraction domain. First, the

distribution that we try to fit in order to perform background

subtraction is a non-stationary distribution. And second, the

number of modes that we use is limited, but not fixed.

Moreover, the winner-takes-all updating strategy and the

matching mode selection scheme favour the update of dom-

inating modes. Therefore, we can consider that the merging

operation is implicitly done in the variant of the EM used

for background subtraction and will only need to define an

appropriate splitting rule.

To select candidate modes for the splitting operation we

use the value σi,t as calculated in the former section and

set σ2
c = cσ2

i,t, with c > 1. Updated modes m with

σ2
m > σ2

c are selected for splitting into the m′ and the

m′′ Gaussians. By setting c > 1 we account for a certain

variation of the variance of background pixels. For c→∞
the behaviour of the system is the same as state-of-the-art

GMMs with adaptive setting of the initialization variance.

Selected Gaussians m are splitted as follows:

ωm′,t = ωm,t (12)

ωm′′,t = α (13)

μm′,t = μm,t (14)

μm′′ = Xt (15)

σm′,t = σm′′,t = σi,t (16)

That means, we use m′ to represent the background and m′′

to represent the foreground. Furthermore, we assume that the

observed value Xt at the moment of splitting Gaussian m

corresponds to a foreground pixel and that the mean value

μm,t can still be considered as a good description of the

background even if shrinking the variance of m′ to the value

of σi,t. Since the initial parameter values given to m′ are

often poor, we set its counter ηm′,t to a small value.

III. EXPERIMENTAL RESULTS

To assess the proposed system, in the next referred to

as SGMM for brevity, we first validated the proposed tech-

nique for the estimation of σi,t, then, measured the overall

computational load and, finally, evaluated the segmentation

results.

For the validation of the proposed technique for the

estimation of σi,t, we used three video sequences exhibiting

three different behaviours concerning the amount of fore-

ground activity and lighting conditions, so as to proof that

the parameter σi,t is able to follow the charasteristics of the

scene. The first sequence, Lobby, contains 70000 frames (≈
2 h.) recorded in the lobby of a crowded public building,

which has both natural and artificial light. As it gets darker

outside, it is easy to appreciate how the camera noise raises.

The second sequence, Winter, contains 65000 frames (≈ 1

h. 50 min.) recorded in a sparsely crowded yard in winter.

At the beginning of the scene it is snowing and, therefore,

measurements are very noisy; at the end of the scene

stops snowing and, therefore, the noise shrinks. The third

sequence, Underground, is a public sequence taken from

the i-LIDS dataset supplied to AVSS 2007, containing 5223

frames (≈ 3 min.). It contains a scene in an underground;

the field of view is short and therefore the moving objects

large. The noise is nearly constant during the whole scene.

In order to evaluate the estimated σi,t values, we com-

puted the absolute deviation for consecutive values (Xt,

Xt+1) of each pixel for each pair of consecutive frames

and estimated the standard deviation of the modes repre-

senting the background as in eq. (7). We used this value

as groundtruth, σGT , and evaluate σi,t with respect to

it. In sparsely crowded environments, e. g. Winter, σGT

approaches the variance of most of the pixels belonging to

the background. In crowded environments, e.g. Lobby, σGT

has a slightly higher value than most of the pixels belonging

to the background. Therefore, our searched value σi,t should

be slightly higher or similar to σGT , depending on the kind

of scene. Figure 1 shows the results obtained for the three

above mentioned sequences. The blue line, σi,t, shows the

behaviour of the algorithm as described in this paper. The

proposed system is able to correctly follow the dynamic of

the scene and finds values near to σGT . The dashed cyan,

σo,t, and green, σu,t, lines, show that the algorithm also

converges to suitable values even in the hypothetic case

of a wrong initialization (this case was forced, since the

algorithm started well for the three sequences).

Table I shows the processing time for the above mentioned

sequences (each frame containing 720 ∗ 576 RGB pixels) in
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Figure 1. Behaviour of the proposed heuristic for the test video sequences Lobby, Winter and Underground.

a 3GHz PC without software optimization. For comparison,

we also measured the processing time needed by the system

in [4], in the next AGMM. AGMM is able to automatically

select the number of needed components per pixel in order

to adapt to the observed scene, but does not have any

means to initialize and control the variance parameter of

the Gaussian modes. The processing times of both systems

are very similar for sparsely crowded scenarios. In fact, our

proposed method converges to similar background models

as AGMM in sequences of sparsely crowded scenarios,

where over-dominating modes rarely appear. In crowded

scenarios SGMM needs more processing time than AGMM.

This is not a surprise, since AGMM often converges to

models where over-dominating modes cover a wide range

of the possible pixel values. Particularly, in the case of

the Lobby sequence, many of the GMMs obtained by the

AGMM converged to unimodal mixtures, therefore not being

able to properly segment foreground objects. On the other

hand, the proposed system was able to correctly select

and split over-dominating modes and thus provided useful

segmentation results. To summarize, in comparison to the

reference system, the proposed system achieved similar

segmentation results at similar processing times in sparsely

crowded environments, while achieving significantly better

results in crowded scenarios at the price of a slightly higher

processing time.

Sequence SGMM IGMM

Lobby 43,96 37,52

Winter 34,15 33,65

Underground 34,84 35,45

Table I
PROCESSING TIME IN MS. OF THE THREE COMPARED SYSTEMS.

To evaluate the segmentation results, we used the dataset

of the IEEE Workshop on Change Detection, held in con-

junction with the CVPR 2012. The dataset consists of 31

surveillance videos divided into six categories covering most

of the challenges regarding background subtraction for the

task of video surveillance. The dataset is provided with a set

of human-annotated ground truth and a toolkit to compute

the performance metrics used, so as to enable a quantita-

tive comparison and ranking of foreground segmentation

algorithms. More information on the dataset can be found

at www.changedetection.net. Our proposed algorithm was

tested through the whole dataset and ranked against the

algorithms that were provided as benchmark at the time

of the workshop proposal, namely SOBS [14], ViBe [16],

KDE [17], the seminal GMM formulation in [3] (in the

table referred to as GMM), a GMM with a two phases kind

of learning and shadow detection as proposed in [15] (in

the table, TPGMM-SD), a GMM with automatic selection

of number of components per pixel as proposed in [4]

(in the table, AGMM), Mahalanobis distance [18] (in the

table, MD) and Euclidean distance [18](in the table, ED).

For the computation of the performance metrics used for

ranking we used the provided toolkit. The performance

metrics are: Recall (Re), Specificity (Sp), False Positive Rate

(FPR), False Negative Rate (FNR), Percentage of Wrong

Classifications (PWC), F-Measure and Precision. The results

of the benchmark methods were taken from the website

of the workshop. Table II shows the average results along

the dataset, the ranking considering the average results, and

the average ranking accross the different categories. The

detailled results obtained for the individual categories will

be provided to the organizers of the workshop, who aim

to update the ranking of methods for years to come so

that the dataset becomes like the Middlebury dataset for

optical flow and stereo vision, upon publication of this

article. The proposed method outperformed not only the

GMM methods already evaluated as benchmark, but also

every other evaluated method.

IV. CONCLUSIONS

The proposed system contibutes two main improvements

to the GMMs for the task of background subtraction. First,

we propose the incorporation of a heuristic in order to

adaptively compute a value for the correct initialization of

the variance parameter of new created modes, which leads

models to faster converge to meaningful representations of

the observed scene. Second, we derive a splitting rule in

order to avoid over-dominating nodes, therefore significantly

improving segmentation results in crowded environments.

Moreover, since the computation of the variance controlling

value only requires three global variables and a very re-

duced set of computationally light operations, the method

complies the requirements of a surveillance system and

can be straightforward extended to account for hardware

considerations as proposed in [6].

304



Method Average ranking Average Average Average Average Average Average Average Average

accross categories ranking Re Sp FPR FNR PWC F-Measure Precision

SGMM 3,00 2,86 0.7074 0.9910 0.0090 0.0191 2.5299 0.7009 0.7813

SOBS 3,00 3,00 0.7854 0.9805 0.0195 0.0097 2.7049 0.7039 0.7040

TPGMM-SD 4,17 4,86 0.5075 0.9946 0.0054 0.0294 3.1296 0.5871 0.8182

KDE 4,17 5,29 0.7371 0.9749 0.0251 0.0147 3.5974 0.6607 0.6749

ViBe 4,33 5,00 0.6758 0.9825 0.0175 0.0182 3.2035 0.6599 0.7301

GMM 5.50 4.57 0.7070 0.9864 0.0136 0.0206 3.0962 0.6561 0.6987

AGMM 6,17 5,57 0.6942 0.9846 0.0154 0.0194 3.1498 0.6542 0.7045

MD 7,00 6,71 0.7584 0.9576 0.0424 0.0112 4.8771 0.6143 0.5904

ED 7,67 7,14 0.7020 0.9683 0.0317 0.0173 4.4509 0.6016 0.6110

Table II
SEGMENTATION RESULTS.
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