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ABSTRACT

This article presents a theoretical framework to decrease the
computation effort of the Robust Local Optical Flow method
which is based on the Lucas Kanade method. We show math-
ematically, how to transform the iterative scheme of the fea-
ture tracker into a system of bilinear equations and thus esti-
mate the motion vectors directly by analyzing its zeros. Fur-
thermore, we show that it is possible to parallelise our ap-
proach efficiently on a GPU, thus, outperforming the cur-
rent OpenCV-OpenCL implementation of the pyramidal Lu-
cas Kanade method in terms of runtime and accuracy. Finally,
an evaluation is given for the Middlebury Optical Flow and
the KITTI datasets.

Index Terms— Optical flow, KLT, feature tracking,
RLOF, OpenCL, GPU

1. INTRODUCTION

Motion information has become an important cue in many
video-based computer vision applications, not least because
the accuracy and efficiency of motion estimation techniques
have been substantially improved in recent years.

The most common motion estimation methods are based
on the concept of optical flow [1] and can be classified as
global and local approaches. Global approaches are based on
a system of equations in which the resulting motion of each
point depends on the data of the whole image through coupled
energy terms as, e.g., the smoothness constraint proposed by
Horn and Schunck [2]. In this way, these methods are able to
estimate the optical flow very accurately [1] but only scalable
related to the image size.

In contrast, local approaches are based on a system of
equations in which a motion vector depends on the textu-
ral information of a limited image region. Local approaches
are scalable related to the number of motion vectors and are
very efficient in estimating sparse motion information. There
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Fig. 1. Citations per year of gradient based optical flow meth-
ods for the origin global [2] and local [3] approach and the
HOAF [4] and KLT [5] as common global and local methods
(source: Microsoft Academic Search).

are still misunderstandings in comparing the accuracy of lo-
cal and global optical flow methods since the evaluation is
based on dense vector fields. For that reason local approaches
are barely represented in the Middlebury evaluation [1] al-
though they are still used in many applications such as robot
navigation, augmented reality or Lagrangian based crowd and
pedestrian analysis which could be deduced from the number
of citations, see figure 1. The KITTI benchmark [6] provides
the opportunity of comparing sparse and dense motion infor-
mation by choosing different evaluation criteria. Comparing
only the estimated pixels the RLOF (Robust Local Optical
Flow) [7] outperforms the global ones in terms of accuracy
and runtime, see Figure 3.

In the recent past, research on local optical flow was based
on the KLT (Kanade Lucas Tomasi) tracker [5] and motivated
by improving the runtime performance through parallelisa-
tion, e.g. GPU implementations were proposed by Sinhaet
al. [8] and Zachet al. [9] or by reducing the computational
complexity through additional approximations, e.g. integral
projections [10]. In [11] the authors proposed a non-iterative
warping approach for the KLT method that avoids the re-
computation of the mismatch vector between the pixel bor-
ders and thus achieves a reduced runtime without losses in
accuracy. To enhance the accuracy of the motion vectors,

senst
Schreibmaschinentext
Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, to use this material for any other purposed must be obtained from IEEE by sending an email to pubs-permissions@ieee.org



Kim et al. [12], Odebezet al. [13] and Senstet al. [7] in-
vestigated into norms that are robust against outliers.

In this paper we will introduce a fast and accurate local
optical flow method for sparse motion estimation that is based
on the RLOF and motivated by the work of Rav-Acha and Pe-
leg [11]. We will mathematically show how to transform the
iterative solution scheme of the RLOF into a system of bi-
linear equation and thus derive a scheme to directly solve a
defined set of motion vectors. In contrast to [11], the pro-
posed method does not only avoid the re-computation of the
mismatch vector, but it also includes a strategy to compute
the respective motion vector directly, which results in an ad-
ditional runtime gain.

2. RLOF BY MEANS OF BILINEAR EQUATIONS

In order to introduce the mathematical notation used in this
paper, we will first briefly review the Lucas Kanade method.
The computation of a motion vectord = (u, v)T is given by
minimizing the following generalized gradient-based optical
flow equation [7]:

min
d

∑

Ω

w(x) · ρ
(

∇I(x)
T
· d+ It(x),σ

)

(1)

The displacementd for a small regionΩ at timet is estimated
depending on the spatial derivatives∇I(x) and the temporal
derivativeIt(x) = I(x, t)− I(x, t+ 1) of a grayscale image
I(x, t) for x ∈ Ω, wherew(x) is a weighting function andρ a
norm with its scale parametersσ. To solve equation (1) Lucas
and Kanade applied the least square estimator i.e.ρ(y) =
y2. In current applications [5] a pyramidal implementation
and for each level an iterative scheme in a Newton-Raphson
fashion is applied, so that:

∆d
i =

[
∑

Ω

∇I(x) · ∇I(x)
T

]−1

︸ ︷︷ ︸

G−1(inv. gradient matrix)

·

[
∑

Ω

∇I(x) · Ii−1
t (x)

]

︸ ︷︷ ︸

bi−1(mismatch vector)

(2)

denotes the incremental motion vector and:

d
i ← d

i−1 +∆d
i (3)

denotes the iterative update or alignment for each motion vec-
tor d and is applied to each pyramidal level. While the gradi-
ent matrix is constant for each iteration, the mismatch vector
has to be updated at each step by warping the second frame,
so thatIi−1

t (x) = I(x, t)−I(x+d
i−1, t+1). The computa-

tional cost of the Lucas Kanade method for each level is than
given byO(n · i ·N2), with N2 the number of pixels inΩ, n
the number of motion vectors to compute andi the number of
iterations per motion vector.

To achieve subpixel accuracy an interpolation kernel is ap-
plied to estimate the subpixel values of the mismatch vector

and the gradient matrix. As described by Rav-Acha and Pe-
leg [11], it is possible to update the mismatch vector without
warping the second image in the subpixel domain for each
iteration, because the subpixel values only depend on the in-
terpolation kernel and its adjacent pixels.

In this article the interpolation kernel is to be constrained
as bilinear which is the base of the following lemma:

Lemma 1. Let ǫx and ǫy be the decimal fraction with
⌊
d
i−1

⌋
+(ǫx, ǫy)

T = d
i−1 andx00 ∈ Z

2 the respective inte-
ger value of the position

⌊
x+

⌊
d
i−1

⌋⌋
with its adjacent pixel

positionsx01,x10,x11 ∈ Z
2. Assuming thatǫx, ǫy ∈ [0, 1)

and the subpixel intensity valuesI(x, t), I(x, t + 1) are esti-
mated with the bilinear interpolation, than equation(2) could
be formulated as the following system of bilinear equations:

δ
i(ǫx, ǫy) = ǫxǫya1 + ǫxa2 + ǫya3 + a4, (4)

with ak, δ
i ∈ R

2.

Proof. To solve equation (2), note that the gradient matrix is
fixed and the bilinear interpolation is applied to the mismatch
vectorbi−1. Using the following auxiliary variables:

c1 = c3 +
∑

Ω

∇I(x) · (Ii−1
t (x11)− Ii−1

t (x10))

c2 = c4 −
∑

Ω

∇I(x) · Ii−1
t (x10)

c3 = c4 −
∑

Ω

∇I(x) · Ii−1
t (x01)

c4 =
∑

Ω

∇I(x) · Ii−1
t (x00) (5)

we can insert the inverse gradient matrix that is a coupled term
between the two components of the mismatch vector:

ak = G
−1 · ck. (6)

Following equation (5) and (6) it is obvious that equation (2)
could be formulated with equation (4) and∆d

i = δ
i.

Lemma 1 proves that the convergence behavior of the iter-
ative Lucas Kanade method at the subpixel range is only de-
pended on four adjacent intensity values that are constant for
ǫx, ǫy ∈ [0, 1). This methodology could be extended for the
RLOF by the following theorem since the shrinked Hampel
norm used by the RLOF is composed of quadratic functions
which are important since the derivative of the norm deter-
mines the form of the mismatch vector.

Theorem 1. Let y of ρ(y,σ) be fixed forǫx, ǫy ∈ [0, 1) and
the subpixel intensity valuesI(x, t), I(x, t + 1) to be esti-
mated by bilinear interpolation, then∆d

i ∈ R
2 estimated by

the RLOF method depends on the following system of bilinear
equations:

δ
i(ǫx, ǫy) = ǫxǫya1 + ǫxa2 + ǫya3 + a4, (7)

with ak, δ
i ∈ R

2.



Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus
AEE η AEE η AEE η AEE η AEE η AEE η AEE η AEE η

RLOF 0.11 99.3 0.17 95.6 0.52 86.0 0.24 92.8 0.19 94.8 0.30 88.3 0.42 83.0 0.30 92.4
BERLOF 0.13 99.4 0.20 94.6 0.63 82.6 0.29 93.6 0.24 96.9 0.40 89.2 0.49 85.1 0.37 93.9
PLK 0.13 96.7 0.24 96.1 0.72 88.0 0.34 92.5 0.27 86.3 0.43 88.8 0.54 86.1 0.40 91.5

Table 1. Results of the Middlebury training sequences for sparse motion estimation.

Proof. According to [7] the incremental motion vector∆d
i

is defined as:

∆d
i = G

−1
RLOF · b

i−1
RLOF (8)

whereG−1
RLOF is fixed and the bilinear interpolation is ap-

plied to the mismatch vector.

b
i−1
RLOF =

∑

Ω1∈Ω

∇I(x) ·

(

(1− ǫx)(1− ǫy)I
i−1
t (x00)

+ ǫxǫyI
i−1
t (x11) + (1− ǫx)ǫy · I

i−1
t (x01)

+ ǫx(1− ǫy) · I
i−1
t (x10)

)

+
∑

Ω2∈Ω

σ1

σ1 − σ2
∇I(x) ·

(

ǫxǫyI
i−1
t (x11)

+ . . .

− sign(Ii−1
t (x))σ2

)

(9)

with Ω1 denoting the subsetΩ fulfilling |Ii−1
t (x)| ≤ σ1 and

Ω2 the subset of pixels fulfillingσ1 < |Ii−1
t (x)| < σ2. It is

obvious that equation 9 could be transformed such as equa-
tion 5 and 6.

Note, the approximation of settingy = Ii−1
t (x) of

ρ(y,σ) to be constant is needed to transfer equation 8 into
a system of bilinear equations. The solution of the iter-
ative scheme (3) is determined by one of the two zeros
ǫx0[1,2] , ǫy0[1,2] of the system of bilinear equations (4). A
zero is a valid candidate for the limit of equation (3), sinceit
fulfills the necessary break condition:

∆d
i = δ

i(ǫx0[1,2] , ǫy0[1,2])
!
= (0, 0)T (10)

∀ǫx0[1,2] , ǫy0[1,2] ∈ [0, 1). To ensure equation (3) to converges

to a zero,δi has to be strictly monotonically decreasing at
the candidate position. That implies the following sufficient
conditions:

∂δiu(ǫx, ǫy)

∂ǫx
< 0 ,

∂δiv(ǫx, ǫy)

∂ǫy
< 0 (11)

with δ
i = (δiu, δ

i
v)

T . If only one zero fulfills the neces-
sary and the sufficient condition, the iterative scheme willbe
solved directly by the following analytical solution:

d
i =

⌊
d
i−1

⌋
+ (ǫx0, ǫy0)

T . (12)

Otherwise the motion vector will be updated with the accel-
erated iterative displacementδ

i(ǫx, ǫy) similar to [11].
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Fig. 2. Performance evaluation of the RLOF and BERLOF by
comparing the total number of iterations for the Middleburry
dataset.

3. EVALUATION

The evaluation of the proposed Robust Local Optical Flow
by means of bilinear equations (BERLOF) has been per-
formed with the Middlebury [1] and the KITTI [6] optical
flow datasets. The performance has been measured in terms
of runtime and accuracy for sparse motion vector fields.
Therefore, we integrate each algorithm into a feature tracking
framework, i.e. features are selected with the FAST [14]
detector, tracked and validated by means of the forward
and backward confidence. We compare the BERLOF with
the RLOF available athttp://www.nue.tu-berlin.
de/menue/forschung/projekte/rlof/ and the
OpenCL OpenCV 2.4.3 implementation of the pyramidal Lu-
cas Kanade (PLK) method available athttp://opencv.
org/. All methods are implemented by using OpenCL and
run on a NVIDIA 480 GTX GPU. For each method we use
the same basic configuration parameters, i.e. 3 pyramid lev-
els,15 × 15 region sizeΩ, the convergence criteria are set to
20 maximal iterations,ǫ = 0.1 and the confidence threshold
to 0.5. The norm parameter of the BERLOF and the RLOF
are set toσ = (8, 50)T and the small region size of the RLOF
was set to7× 7.

As stated in Section 2 the motion vectord
i can be com-

puted directly, if only one zero fulfills the necessary (10) and
sufficient (11) condition. Figure 2 indicates in how many
cases these conditions are valid. The plot illustrates the total
number of iterations. On average the BERLOF computed
40% of the total iterations used by the RLOF. However, these
measures are taken from the dense motion estimates for the



Fig. 3. Screenshots of the KITTI benchmark for sparse evaluation by time of submission (05.2013); More details are available
athttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow&eval=est.
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Fig. 4. Runtime comparison of RLOF, PLK and the BERLOF
method for the Grove3 sequence of the Middleburry dataset
(GPU OpenCL implementations). The solid line denote the
25 fps border by which the BERLOF is able to estimate
61.440, the PLK 25.920 and the RLOF 20.540 features.

Middlebury training sequences. As stated in Section 1 the
scope of applications using local optical flow tracker is in
computing sparse motion information in real-time. To cover
a wide range of possible applications, we measured the run-
time of each algorithm for varying number of features to
track. Figure 4 shows the runtime comparison for the Grove3
sequence (resolution640 × 480). In terms of runtime the
BERLOF outperforms the RLOF and the OpenCV’s PLK
implementations. The BERLOF is able to compute 137.04%
more motion vectors than the OpenCV PLK implementation
in real-time (25fps). The results show that the theoreticalim-
provement of the proposed partial analytical solutions could
be implemented into an efficient feature tracking method that
is beneficial for a huge set of applications.

The accuracy of the BERLOF is evaluated in Table 1. In
addition to the average endpoint error (AEE), we provide the
tracking efficiency (η) [7] to identify the rejected motion esti-
mates. Table 1 shows that the BERLOF is less accurate than
the RLOF but more precise than the PLK method. Unlike
RLOF the BERLOF is not implementing the region adaption
in order improve the performance the parallelised BERLOF.

Thus the error rate at motion boundaries has been increased.
However the difference in accuracy related to the improved
runtime is marginal.

In addition, the BERLOF method has been submitted to
the KITTI benchmark. The dataset consist of high-resolution
(1241× 376) grayscale image sequences captured form a car
driving around the mid-size city of Karlsruhe. The bench-
mark is able to deal with dense and sparse motion estimation
methods. If, as in our case, a sparse motion vector field has
been submitted, then the dense evaluation is done by interpo-
lating the dense motion vector field. A full description of the
dataset and the ranking methodologies can be found at [6].
We adapt the parameter configuration, since the dataset pro-
vides a higher resolution. Details are published on the dataset
website. By the time of submission of this paper, the pro-
posed method is being ranked in the second position behind
the RLOF method by evaluating the estimated pixels only.
Figure 3 shows a snapshot for the sparse mode of the over-
all performance of the top 4 algorithms. As shown by the
evaluation with the Middleburry dataset, the BERLOF does
not obtaining the full accuracy of the RLOF, but it is able to
reduce the runtime from 600ms to 380ms for a sparse imple-
mentation.

4. CONCLUSION

In this paper we presented a mathematical formulation of the
iterative solution of the Robust Local Optical Flow method
which allows us to analytically and directly estimate a sub-
set of motion vectors. We proved that the computation of
incremental motion vectors can be reformulated as a system
of bilinear equations in the subpixel domain. Furthermore we
show that a determined set of zeroes correspond to the solu-
tion of the baseline iterative scheme. The experimental evalu-
ation supported our argumentation. For the Grove3 sequence
of the Middlebury dataset the BERLOF is able to compute
137.04% more motion vectors than the OpenCV PLK on a
GPU at 25fps. The sparse evaluation of the KITTI dataset
shows that the runtime of the BERLOF tracker is 63.3% in
relation to the RLOF tracker and a similar accuracy.
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