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We present an unsupervised motion-based object segmentation algorithm for video
sequences with moving camera, employing bidirectional inter-frame change detection.
For every frame, two error frames are generated using motion compensation. They are
combined and a segmentation algorithm based on thresholding is applied. We employ a
simple and effective error fusion scheme and consider spatial error localization in the
thresholding step. We find the optimal weights for the weighted mean thresholding
algorithm that enables unsupervised robust moving object segmentation. Further, a post
processing step for improving the temporal consistency of the segmentation masks is
incorporated and thus we achieve improved performance compared to the previously
proposed methods. The experimental evaluation and comparison with other methods
demonstrate the validity of the proposed method.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Object segmentation is an essential step for many applica-
tions such as content retrieval, interactive multimedia services
and object-based video coding. Motion is among the salient
characteristics that the human visual system perceives, and
thus it comprises a very powerful feature that the image
processing community has adopted to address object
segmentation tasks.
1.1. Existing approaches

A common approach for dealing with the object segmen-
tation task [1] is change detection. Given a set of video
frames of the same scene, the change detection mask is the
set of pixels that are “significantly different” between frames.
All rights reserved.

.G. Arvanitidou).
The change detection mask may result from a combination
of underlying factors, including appearance or disappearance
of objects, motion of objects relative to the background, or
shape changes of objects. A typical method is background
subtraction, involving calculating a background model, sub-
tracting each frame from it and processing the resulting
information [2,3]. Many background models have been
introduced to deal with several issues, such as small motion
activity [4], complex scenes [5], lighting variations, and
recently benchmark datasets that focus on such issues have
been created and published [6] for further reference. These
approaches rely on a training step to learn the reference
background model and usually they do not take into account
the temporal relations between frames.

Inter-frame change detection algorithms employ the
difference between temporal neighboring video frames to
perform object segmentation, and no background model-
ing is involved. In this category, many algorithms have
been proposed that focus on inter-frame change detection
employing one adjacent frame. Kim and Hwang [7] derive
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an edge map from the difference between two successive
frames and after removing edge points which belong to
the previous frame, the remaining edge map is used to
extract the video object plane. The algorithm involves two
thresholds, that are set heuristically and also requires manual
definition of a background edge map. In the segmentation
model proposed in [8] the change detection mask is obtained
using the difference between two successive frames and a
local thresholding relaxation technique is employed to
enforce spatial continuity. In order to increase temporal
stability, a buffer is incorporated such that the last N change
detection masks participate in the final segmentation deci-
sion step. In the case of sequences with moving camera, Qi
et al. [9] presented a Global Motion Estimation (GME)
approach that is using one adjacent frame towards video
object segmentation. This GME approach is employed to
perform object segmentation, which is also used internally to
predict and reject outliers for GME in the following frame.

Consideration of only one adjacent frame for inter-frame
change detection yields partial foreground detection, since
only edges of the corresponding motion direction are
detected. The double change detection approach – based
on three successive frames – has been adopted to overcome
this issue. Kameda and Minoh proposed in [10] to use error
frames from both directions. They end up with two binary
masks and fuse them using the intersect operation. Shih
et al. [11] employ three adjacent frames in a similar manner
and additionally perform motion compensation followed by
optical flow estimation to address cases with non-
stationary background. Huang et al. [12] employ three
successive frames for change detection in the wavelet
domain and obtain the moving object edge map after
applying the intersect operation between the edge maps
of significant difference pixel of each pair in each direction.
Liu et al. [13] employ a similar technique to [12] use three
successive frames but they use fuzzy C-means clustering
instead of frame difference to classify motion features. The
change detection masks are obtained in the wavelet domain
after applying the intersect operation to the binary masks of
each directions.
1.2. Proposed approach

In this contribution, we focus on inter-frame change
detection algorithms and specifically under the presence of
camera motion and we propose a segmentation algorithm
based on inter-frame change detection that employs a
bidirectional fusion scheme of the global motion compen-
sated error. We demonstrate that our error fusion scheme
Fig. 1. Proposed sys
outperforms the intersection fusion scheme that is com-
monly employed. At first step, global motion is compen-
sated between temporally adjacent video frames and
between their corresponding motion vector fields. The
compensated frames are employed for generating global
motion compensated error maps and the compensated
motion vector fields are employed in the post-processing
step for improving temporal consistency. After low-pass
filtering of error maps, hysteresis thresholding follows that
exploits spatial connectivity of global motion compensated
errors. In this step, we avoid setting the thresholding
parameters heuristically, which is commonly found in
the literature. Rather, we study the problem of optimal
weight selection for hysteresis thresholding of error
images using the weighted mean thresholding approach
proposed in [14] and extended in [15]. Furthermore, we
propose a novel adaptive scheme for mitigating the
negative effect of temporal inconsistencies while avoiding
the incorporation of a buffer. In this way, a large number of
previous masks is not necessary to be processed for the
final segmentation decision step. As shown in the experi-
mental evaluation, background detection accuracy is
increased while foreground detection is maintained to be
complete enough through filtering of the preliminary binary
masks, which is adapted according to the motion of the
foreground.

The paper is organized as follows. Section 2 first over-
views the system and then describes the employed robust
global motion estimation and error generation approaches.
Following, the segmentation algorithm that includes filter-
ing, thresholding as well as a post-processing step is
described in detail. The outcome of the proposed algo-
rithm is evaluated on seven test sequences, and the results
are presented in Section 3. Finally, Section 4 concludes the
paper with discussion on perspectives on the subject.
2. Object segmentation based on bidirectional inter-
frame change detection

The overview of the proposed algorithm is shown in Fig. 1.
For the nth frame of a video sequence we employ two
adjacent frames, one for each temporal direction. The lumi-
nance component contains the most important information
for the scope of motion segmentation. The incorporation of
the other chroma components, as illustrated in the example
in Fig. 9, does not bring substantial improvement, and thus
only the luminance component is taken into account. Since
our approach deals with sequences with moving camera, the
parametric model that describes global (i.e. mainly induced
tem overview.



Fig. 2. Global motion estimation algorithm using the Helmholtz Tradeoff Estimator and two motion models.

Fig. 3. The block motion vector field for frame 100 of the Allstars
sequence encoded with the KTA reference software (QP 18), SKIP blocks
(S) and INTRA blocks (I) are omitted from the global motion estimation
process.
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by camera) motion between two given video frames in each
temporal direction (Global Motion Estimation, GME) has to
be estimated first. Following, their global motion is compen-
sated (Global Motion Compensation, GMC) and eventually
the error maps En�1

n and Enþ1
n are obtained. Global motion is

also compensated between the corresponding motion vector
fields and the resulting information is employed in the post-
processing step for improving temporal consistency. The
obtained error energy maps are fused using averaging,
resulting in En. While error locations indicate moving objects'
boundaries in real scenes, exploiting directly the error frames
for extracting boundary information of moving objects
would suffer from great deal of noise even in the ideal case
of perfectly compensated global motion. This is due to the
fact that random noise created in one frame is different from
the one created in successive frames [7], and thus results in
slight changes of the error locations (i.e. potentially moving
objects) in successive frames. Therefore, the error frame En is
filtered, and subsequently a thresholding segmentation
scheme, encompassing spatial localization of the error
energy, is applied. In the obtained preliminary binary image
B′
n every pixel is labeled as either foreground or background.

Finally, the Background Temporal Refinement step reinforces
spatiotemporal consistency, resulting in the final segmenta-
tion mask Bn.

The assumptions under which the proposed algorithm
performs well as well as limitations and strong points are
discussed below:
�
 The camera viewpoint is assumed to be fixed, for a valid
representation of background motion by the parametric
motion model involved in GME.
�
 There is no limitation in the number of objects in the
scene that can be detected. Nevertheless, when objects
are very close to each other they tend to be classified as
one combined object.
�
 Regarding foreground object size the objects are not
detected if they are smaller than approximately 10% of
the image frame due to morphological processing.
Additionally, if the object is larger than approximately
80% of the frame the Global Motion Estimation reflects
inaccurately real camera motion and thus segmentation
performance decreases dramatically.
�
 There is no background modeling involved and the
algorithm does not need any training stage for para-
meter setting.
�
 No a priori information is assumed on the shape and
texture of objects. In cases of lightly textured, low colored
sequences, static camera or newly appearing objects;
the algorithm performs robustly as long as there is
apparent motion differentiation between foreground and
background.

2.1. Global motion compensation

The employed global motion estimation algorithm,
proposed by Tok et al. in [16] is a Monte-Carlo based
method using the Helmholtz Tradeoff Estimator and is
overviewed in Fig. 2. The algorithm derives background
motion models from a set of local translational motion
models such as motion vectors of encoded video streams.
An example for such motion vector fields is shown in
Fig. 3. Misestimated motion vectors and the ones belong-
ing to foreground objects are removed by applying the
Helmholtz principle. Thus, the global motion estimation
algorithm can estimate parametric models from motion
vector sets that have up to ɛ¼ 80% of outliers. In this
section, frame indices are omitted for brevity.

For a pair of video frames, the algorithm generates
preliminary motion models H′ from randomly selected
motion vectors and evaluates how well such a model fits
the whole set of all K vectors. This step is repeated M
times. In each iteration step νAf1;…;Mg, two (uniformly)



Fig. 4. Transformation matrices A for rotation, zoom and translation that transform a position p¼ ðx; y;1ÞT to a new position p′¼ ðx′; y′;1ÞT by p′¼A � p.
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randomly selected vectors are taken from the motion
vector field to derive a preliminary four parameter model:

H′
ν ¼

m′
0;ν m′

1;ν m′
2;ν

�m′
1;ν m′

0;ν m′
3;ν

0 0 1

0
B@

1
CA ð1Þ

to roughly describe the translational, rotational and zoom
deformation (Fig. 4) between two frames induced by
camera motion. For each vector of the whole set a fitting
error related to the model H′

ν is calculated. Following [17],
the ð1�ɛÞth percentile λν is then taken to estimate an error
standard deviation:

sν ¼ 1:4826 � 1þ 5
K�p

� �
� λν; ð2Þ

where p is the amount of observations (motion
vector components, MVX and MVY ) needed to describe a
model H′

ν.
A new subset Θν of all vectors that fit the motion

defined by H′
ν with an error smaller than 5=2sν is defined

[17]. This subset is rated by its standard deviation sΘ;ν and
size IΘ;ν:

Φν ¼
IΘ;ν
sΘ;ν

: ð3Þ

Finally the subset Θν with the highest rating Φν is taken to
derive a perspective eight parameter model:

H¼
m0 m1 m2

m3 m4 m5

m6 m7 1

0
B@

1
CA ð4Þ

using Least Squares regression. This model can describe
more complex deformations between two video frames,
such as translation, rotation, zoom and perspective
deformation.

The probability P for selecting two vectors to derive a
preliminary model H′

ν with p¼4 parameters and an
expected outlier percentage of ɛ is

P ¼ 1�ð1�ð1�ɛÞpÞM : ð5Þ
Thus, the iteration count M can easily be estimated as

M¼ logð1�PÞ
logð1�ð1�ɛÞpÞ: ð6Þ

In this paper, P has been set to 99.5% and ɛ has been set to
70% to ensure accurate estimation of the background
motion.

2.2. Bidirectional change detection

For the nth frame of the video sequence, let In�1
n and

Inþ1
n be the estimations of In based on the corresponding
eight-parameter global motion models as in (4) between
In�1 and Inþ1 respectively. Based on these, as depicted in
Fig. 1, the global motion compensated error frames for the
two temporal directions are En�1

n ¼ jIn� In�1
n j and

Enþ1
n ¼ jIn� Inþ1

n j.
As discussed in Section 1.1, many inter-frame change

detection algorithms in the literature focus on motion
information of one temporal direction i.e. In�1 or Inþ1.
In this way, only edges of one motion direction are
included in the foreground region. To overcome this issue,
Kameda and Minoh proposed to use error frames from the
preceding and succeeding frames. In [10], they perform
thresholding on the global motion compensated errors of
each direction En�1

n and Enþ1
n separately and then obtain a

“double-difference image” by a logical intersect operation
between the resulting binary masks Bn�1

n and Bnþ1
n . This

concept is also adopted by [11,12]. The intersect operation
ensures that foreground misclassifications are drastically
reduced (resulting in high Precision, as shown in Section
3) in the obtained Bn mask, but at the same time a
significant amount of foreground regions are misclassified
(resulting in low Recall rates).

This shortcoming affects the overall segmentation
quality in a bad manner as we show experimentally in
Section 3. In this paper, we overcome this issue by
including information from both directions in an accumu-
lative manner, instead of employing the intersect opera-
tion. En�1

n and Enþ1
n are combined as

En ¼
En�1
n þEnþ1

n

2
ð7Þ



Fig. 5. Stefan sequence, example error frames. In (a) and (b) the error energy is located mostly on the left and right side of the foreground object,
respectively, while in (c) error location indicates the foreground location better.
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and the thresholding segmentation algorithm is then
applied on En. By fusing the information of these two error
frames, a more complete foreground detection is achieved,
which should be reflected in higher Recall rates in the
evaluation. This is due to approaching each frame “bidir-
ectionally” as illustrated in Fig. 5. Additionally, accurate
global motion estimation enables elimination of high error
energy in the background region and consequently high
Precision rates are achieved. Precision and Recall metrics
are discussed in Section 3.

2.3. Thresholding using hysteresis

The advantages of segmentation algorithms based on
inter-frame change detection are that they are straightforward
to implement and enable automatic detection of new appear-
ing objects. Their drawbacks include noise (small misclassified
regions) and irregular object boundaries [7]. Thus, the error
maps should be filtered prior to thresholding and morpholo-
gical operations such as opening and closing might be
incorporated after thresholding to alleviate noise. Here, we
employ an enhancement of the algorithm proposed in [14]
that encompasses anisotropic diffusion filtering, weighted
mean thresholding and morphological processing. The
enhancement concerns the thresholding step and will be
elaborated in the following.

In the filtering stage, anisotropic diffusion filtering [18]
is employed. Anisotropic diffusion offers a non-linear and
space-variant filtering of the error frame, that while having a
low pass character preserves the edges of the image.
In this way it serves the reduction of high frequency noise
due to misestimations in the background while enhancing
edges. The filter has been set up to perform 20 iterations. The
second conduction function defined in [18] has been used that
privileges wide regions over smaller ones, and in line with the
authors' suggestions, the local contrast kappa has been set to
the 80% value of the integral histogram of the global motion
compensated error image. At the final stage of morphological
processing, small holes of the background are removed and
holes inside foreground objects are closed in succession for
refinement of the binary segmentation mask.

The weighted mean thresholding is given by

TðwÞ ¼w �maxðE′nÞþð1�wÞμ ð8Þ
where w is a constant and μ is the mean of the normalized
filtered error frame E′n (En is normalized by its maximum). The
weightedmean thresholding in (8) is adapted according to the
intensity histogram of every frame, but does not take into
account the error localization. In the global motion compen-
sated error frame, e.g. as depicted in Fig. 5(c), there are
significant error values in the foreground area and errors
resulting from misestimations in the background area. To
eliminate these missestimations, we enhance the weighted
mean thresholding approach, as follows.

At first stage, pixels assigned with high error energy are
labeled as foreground (F0 region). An example is illustrated
in Fig. 6(a). Following, pixels with lower error energy, that
are spatially connected with F0, are favored against the
ones not connected with F0, even when the latter have
high error energy. Thus, we employ two hysteresis thresh-
olds [15,19]. We begin by applying a low threshold TðwlowÞ
using (8). This results in high amount of falsely detected
foreground pixels, but we can be fairly sure that most
regions of the foreground are correctly classified. We then
apply a higher threshold TðwhighÞ only on regions that are
connected with the binary result from TðwlowÞ. Once this
process is complete we have a binary mask where each
pixel is marked as either foreground or background.

Eventually, the obtained segmentation mask B′
n is

given by

B′
n ¼ kðDn;ðwlow ;whighÞÞ ð9Þ

where

Dn;ðwlow ;whighÞ ¼ θðϕ n E′nÞ ð10Þ

E′n is the normalized filtered error frame, ϕ denotes
anisotropic diffusion filtering, θ weighted mean threshold-
ing using hysteresis and k morphological processing.
Following, frame indices are omitted for brevity.

2.4. Optimal weight selection

One main issue that affects the robustness of the
weighted mean algorithm is the appropriate selection of
the weight parameter w involved in (8). In [14], the
authors proposed w¼0.1 heuristically. By adopting hyster-
esis thresholding for sake of increasing accuracy, we have
one more degree of freedom, due to the fact that we have
to search for two optimal thresholding parameters i.e.
their corresponding weights wlow and whigh.

Finding the optimal generic solution for hysteresis thresh-
olding is considered to be a challenging issue [20,21], mainly
due to the strong dependency of the optimal solution on the



Table 1
Basic steps for the optimal weight selection.

Step Outcome

(1) Segment the image using the set of weights
W¼ fWjg, j¼ 1;…; L

Dj

(2) Estimate Ground Truth EGT
(3) Threshold EGT using threshold i¼ 1;…; L PGTi
(4) Compare PGTi and Dj to find the optimal PGTi ¼ k

using χ2 test
PGTk

(5) Find ζ for the optimal segmentation mask Dj

using χ2 test
Dζ
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Fig. 6. Stefan sequence, thresholding examples for frame 20. (a) Segmentation initial classes using hysteresis thresholding. Pixels with E′20ðx; yÞ4TðwhighÞ
are depicted in solid red (class F0). Pixels with E′20ðx; yÞ4TðwlowÞ that are connected with class F0 are depicted in dotted blue and with dashed gray are the
discarded pixels for which E′20ðx; yÞ4TðwlowÞ and are not connected with the ones in class F0. (b) The weighted mean ðTwÞ, Otsu ðTotsuÞ and hysteresis
weighted mean thresholds ðTwlow ; TwhighÞ are depicted on the intensity histogram of the normalized error.
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Fig. 7. Estimated Ground Truth – the first processed frame of the Biathlon
sequence, L¼28.
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input image. A survey on this topic is presented in [22]. The
method of Yitzhaky and Peli [21] is to the best of our
knowledge the method that selects the optimal pair of
hysteresis thresholds from a set of possible values. It is not a
parametric approach and it eliminates manual determination
to the parameter set selection. The algorithm performs
statistical analysis on detection results produced by different
parameters to create an Estimated Ground Truth (EGT) and
finds the optimal pair of parameters for edge detection on
images. We employ this algorithm to find the optimal weights
for weighting mean thresholding using hysteresis on the
global motion compensated error maps. As suggested in
[21], the obtained optimal parameter set is appropriate for
similar images, thus we find the optimal weight set of the first
frame of a video sequence, and employ this for the rest of the
frames. The range of parameters to be tested here is 28
(weight values range from 0.005 to 0.4 in steps of 0.05) which
appears to be reasonable since it covers a wide range of
detection results from noisy to sparse. The procedure is
described in the following and is overviewed in Table 1. Given
a set of L possible weight combinations:

W¼ fWj ¼ ðwlow;whighÞjjwlow;whighA ½0;1� and wlowowhighg
ð11Þ

where j¼ 1;…; L use the segmentation masks D¼ fD1;D2;…;DLg
derived using (10) that correspond to these combinations, to
construct the Estimated Ground Truth (EGT): a pixel location
which is identified as foreground in all segmentation masks,
will be assigned the highest level in the EGT, while a location
identified as foreground only in one segmentation mask will
be assigned the lowest level. Thus, the EGT is constructed
having values within ½1; L�. An EGT example is shown in Fig. 7.

The EGT is then thresholded with each threshold level i in
the set I¼ f1;…; Lg forming the Potential Ground Truth (PGTi)
for the corresponding level i. Following, each PGTi mask is
compared to each Dj segmentation mask, where j¼ 1;…; L
corresponds to each weight combination ðwlow;whighÞAW
and generate four probabilities for each individual match:

TPPGTi
¼ 1
N

∑
N

j ¼ 1
TPPGTi ;Dj

TNPGTi
¼ 1
N

∑
N

j ¼ 1
TNPGTi ;Dj

FPPGTi
¼ 1
N

∑
N

j ¼ 1
FPPGTi ;Dj

FNPGTi
¼ 1
N

∑
N

j ¼ 1
FNPGTi ;Dj

: ð12Þ



Fig. 8. Chi-square metric for finding the optimal weight pair for
weighted mean thresholding for Biathlon sequence. (a) Average chi-
square (χ 2

PGTi
) for every threshold level shows a maximum at level

k¼12. (b) Chi-square (χ2ðDjÞ) between the different detections and the
EGT shows a maximum for the weight set ð0:055;0:105Þ.
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Now, if each PGTi is regarded as ground truth, the above
statistical terms are defined as True Positives (TP): correctly
classified as foreground pixels, True Negatives (TN): correctly
classified as background pixels, False Positives (FP, also known
as Type I error): falsely classified as foreground pixels and False
Negatives (FN, or Type II error): falsely classified as background
pixels.

The best PGTi mask is the one that yields the best match
according to the Chi-square test metric. The Chi-square test
of the optimal weight set [21] is

χ2PGTi
¼ snPGTi

�QPGTi

1�QPGTi

� spPGTi
�ð1�QPGTi

Þ
QPGTi

ð13Þ

where

QPGTi
¼ TPPGTi

þFPPGTi
ð14Þ

snPGTi
¼ TPPGTi

P
ð15Þ

spPGTi
¼ FPPGTi

1�P
ð16Þ

snPGTi
is the sensitivity or True Positive Rate (TPR), and spPGTi

is
the specificity which is equivalent to 1-FPR (False Positive
Rate). Prevalence P is the average relative number of positive
detections. A higher χ2PGTi

indicates a better parameter set
selection. Fig. 8 demonstrates an example of the values of the
Chi-square measure for different weight levels. The best
match between PGTi and the EGT is given for k¼ arg
maxiχ2PGTi

, thus obtaining the optimal potential ground truth
PGTk. Based on this, the following Chi-square is calculated:

χ2 Dj
� �¼ snPGTk ;Dj

�QPGTk ;Dj

1�QPGTk ;Dj

�
spPGTk ;Dj

�ð1�QPGTk ;Dj
Þ

QPGTk ;Dj

ð17Þ

where

QPGTk ;Dj
¼ TPPGTk ;Dj

þFPPGTk ;Dj
ð18Þ

snPGTk ;Dj
¼ TPPGTk ;Dj

TPPGTk ;Dj
þFNPGTk ;Dj

ð19Þ

spPGTk ;Dj
¼ FPPGTk ;Dj

FPPGTk ;Dj
þTNPGTk ;Dj

ð20Þ

and finally the segmentation mask Dζ for ζ ¼ arg maxjχ2ðDjÞ
yields the optimal segmentation mask.

2.5. Spatiotemporal consistency

The obtained segmentation mask (B′
n) usually suffers

from misclassifications, i.e. falsely classified foreground
pixels (False Positives) or falsely classified background
pixels (False Negatives), caused by various sources. In this
section, we identify the circumstances under which such
misclassifications occur and then propose a strategy to
address them. Misclassifications can occur when
�
 the sequence contains background noise (e.g. spectators'
movement in sports sequences) - mainly causes FP;
�
 motion vectors are not describing real motion (e.g. when
generated to optimize the rate-distortion trade-off) -

can cause both FP and FN;
�
 the motion model in Eq. (4) is unable to describe
accurately the undergoing camera motion - can cause
both FP and FN;
�
 the motion of the foreground object (or part of it)
matches the dominant motion of the video frame and
the relative velocity (between foreground and back-
ground) is almost zero - can cause FN;
�
 very high foreground velocity occurs, i.e. large displa-
cement between adjacent frames. This effect is known
as “ghosting effect” and characterizes situations where
the object seems to appear twice [23]. It is present in
cases of inter frame change detection due to the lack of
background modeling - can cause FN.

Additionally, one effect that can deteriorate the seg-
mentation result is the temporal coherence of the esti-
mated sequence of segmentation masks. Non-smooth
changes between consecutive frames might cause bad
effects, such as flickering. The hysteresis scheme can
handle some of the above mentioned error cases to certain



Fig. 9. Example of global motion compensated error frames for luminance and chrominance components as well as combination of them for the mountain
sequence. (a) Y component, (b) U component, (c) V component and (d) Combination of YUV.
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extent (e.g. Fig. 6(a)), due to the fact that it favours object
boundaries' connectivity. In order to deal with the above
described misclassifications and temporal inconsistencies,
we propose the following strategy (Background Temporal
Refinement, BTR). First, the obtained preliminary binary
masks B′

n�1 and B′
n are filtered with a two-dimensional

isotropic Gaussian lowpass filter with standard deviation
that is adapted to every frame according to the average
magnitude of the motion vector subset of the current frame
that corresponds to the foreground region of the previous
frame. Next, the (grayscale) mask that is the Hadamard
product (pairwise multiplication) of the filtered versions of
the preliminary masks is binarized using Otsu thresholding
[24] to produce the final segmentation mask Bn. The multi-
plication of the filtered preliminary masks serves the
elimination of temporal inconsistencies that are observed,
when every binary mask is produced independently of its
adjacent ones. Error propagation is not an issue here, since
B′
n�1 and B′

n are created independently up to this point.
In more detail, filtering serves in creating a spatial

attenuation of the object boundaries so that when the
filtered masks are combined, and depending on the fore-
ground object's velocity, the new parts of the foreground
in B′

n that do not exist in B′
n�1 are maintained. Especially in

cases of fast moving objects, filtering helps towards a more
complete object detection in the final mask. Filtering is
adapted as described in the following:

Hn is the estimated eight-parameter model for the nth
frame of the video sequence, as in Eq. (4). The correspond-
ing global motion compensated vector field is calculated as

MVGMCðx; y;nÞ ¼MVðx; y;nÞ�MVðx; y;HnÞ ð21Þ
where MVðx; y;nÞ is the motion vector field and
MVðx; y;HnÞ is the motion vector field that represents the
estimated global motion. MVGMCðx; y;nÞ and B′

n�1 are used
to calculate an adaptive isotropic Gaussian filter. Let Ω be
the region that B′

n�1 defines and corresponds to N motion
vectors. The preliminary binary mask B′

n is then convolved
with Gaussian filter with kernel size ðϕn � ϕnÞ, where
ϕn ¼ ⌈4 � snþ1⌉ and

sn ¼
1
N

∑
N

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMVGMC

Xi Þ2þðMVGMC
Yi Þ2

q
ð22Þ

standard deviation. iAΩ and MVGMC
Xi , MVGMC

Yi are the
motion vector components for X and Y directions respec-
tively at frame n.

3. Experimental evaluation

Seven test sequences (1570 frames, common inter-
mediate format up to standard definition resolution),
which are described in Table 2 are considered for experi-
mental evaluation. In order to objectively evaluate the
performance of the proposed algorithm we employ manu-
ally created moving objects ground-truth segmentation
sequences. The segmentation accuracy is measured in
terms of Precision (P), Recall (R) and F-measure (F), that
are respectively defined as

P ¼ TP
TPþFP

ð23Þ

R¼ TP
TPþFN

ð24Þ

F ¼ 2
P � R
PþR

� �
ð25Þ

where TP, FP and FN are defined as described in Section 2.4
in the case of comparing the calculated segmentation
mask to manually created ground truth. Precision indicates



Table 2
Dataset description.

Sequence Resolution Frames Objects Camera movement, foreground object & texture description

Allstars 352�288 250 Up to eight Slow pan and tilt, small objects, lightly textured background
Biathlon 352�288 200 One Fast pan and slow zoom, medium sized object, lightly textured background
Mountain 352�192 100 One Pan, tilt and zoom, highly textured background, medium object size
Race 544�336 100 Three Fast pan, moderately textured background, variations in object sizes
Stefan 352�240 300 Up to two Fast pan and zoom, one large object and presence of a much smaller one in

several frames (ball), moderately textured background
BBC fish 720�576 120 One Pan, tilt and zoom, medium object size, lightly textured background
Horse 352�288 120 One Fast pan, fast tilt and zoom, one large object on highly textured background

Table 3
Test sequences and results of experimental evaluation in terms of Average Precision (P), Recall (R) and F-measure (F) of reference and proposed algorithms.
The best Precision, Recall and F-measure results are shown in bold.

Sequence Algorithm 1 [9] Algorithm 2 [10] Algorithm 3

P R F P R F P R F

Allstars 0.44 0.69 0.52 0.84 0.49 0.61 0.77 0.59 0.65
Biathlon 0.24 0.83 0.36 0.92 0.63 0.74 0.78 0.87 0.82
Mountain 0.60 0.95 0.73 0.93 0.59 0.72 0.84 0.85 0.84
Race 0.69 0.84 0.75 0.89 0.41 0.53 0.74 0.83 0.78
Stefan 0.65 0.80 0.69 0.86 0.41 0.52 0.71 0.79 0.73
BBC fish 0.75 0.87 0.80 0.89 0.38 0.53 0.82 0.83 0.81
Horse 0.65 0.78 0.70 0.96 0.24 0.38 0.88 0.70 0.78

Average (%) 57.4 82.2 64.9 89.7 45.0 57.3 79.0 78.1 77.4
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how exact the segmentation is, meaning how accurately
the background is estimated, whereas Recall shows how
complete the foreground segmentation is. Balancing
between these two contradictory quantities, Precision
and Recall, comprises the main challenge that algorithms
dealing with the task of object segmentation must address.
F-measure is the harmonic mean of Precision and Recall
and is widely used as an objective overall indication of the
segmentation quality.

3.1. Algorithm scenarios

In order to compare global motion compensated error
fusion approaches for object segmentation in sequences
with moving camera, we compare the proposed algorithm,
Algorithm 3, which is detailed described in Section 2 to the
following GME error fusion approaches: Algorithm 1 pro-
posed in [9] which uses one adjacent frame for the
detection of object segmentation mask that is also used
to predict and reject outliers for GME and Algorithm 2
proposed in [10] that employs the intersection fusion
scheme as described in Section 2.2. The global motion
estimation algorithm described in Section 2.1 is used for
the error fusion scheme of Algorithm 2, and the segmenta-
tion of global motion error frames as described in Sections
2.3–2.5 are used in each case in order to have a fair
comparison of segmentation performance.

Algorithm 1 produces segmentation masks that suffer
from background misclassifications as well as incom-
plete foreground detection, especially in one side of the
foreground object, due to the fact that one motion
direction is used for global motion compensation. This
results in low Precision, but fairly good Recall rates.
Algorithm 2 presents enhanced background detection
accuracy, since the intersect operation ensures that most
of the background misclassifications are avoided, but the
segmentation masks suffer from incomplete foreground
detection, as described in Section 2.2. This is reflected
by high Precision but very low Recall rates. Algorithm
3 enables complete foreground detection due to the
proposed error fusion scheme and at the same time
produces 33.1% on average more accurate background
detection (in terms of Recall) compared Algorithm 2 on
the whole test dataset.

Fig. 12 illustrates examples of the above cases and
Table 3 shows Precision, Recall and F-measure for the
algorithm scenarios described above. Algorithm 2 performs
on average 32.4% better than Algorithm 1 in terms of
Precision, but suffers from 37.3% lower Recall rates. The
best performance in terms of Precision is achieved by
Algorithm 2 and the best one in terms of Recall is achieved
by Algorithm 1. Nevertheless, Precision and Recall are two
contradictory quantities; often increment of each one of
them means decrement of the other one. Thus, by achieving
good but not the best Precision and Recall rates, but still
above at least 59%, our proposed algorithm outperforms the
reference algorithms and clearly improves the results in
terms of F-Measure. Fig. 10 presents a comparative overview
of the percentage of frames in each test sequence that have
quality above 75% in terms of F-measure. Figs. 13 and 14
illustrate examples of the test dataset, as well as F-measure
curves, using the reference and the proposed algorithms.

By incorporating BTR, the segmentation masks are tem-
porally more consistent, false positives are eliminated, while
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foreground object detection is more complete. The “ghosting
effect”, which appears when foreground objects are moving
fast, is also eliminated due to the filter adaptation according
to the foreground object's velocity, and the object boundaries
are smoothed over time as can be seen e.g. in Fig. 12.
Nevertheless, in the case of Allstars, one of the football
players is repeatedly moving and stopping in front of a static
object, and he is in some cases falsely regarded to belong to
the background together with that static object. This results
in a slight (1.6%) degradation in terms of F-measure, as can
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Fig. 10. Percentage of frames with quality above 75% in terms of F-measure.
Comparison of reference and proposed algorithms.
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Fig. 11. Number of foreground objects detected with the proposed algorithm a
(b) Race and (c) Stefan.
be seen in Table 4 which presents the performance improve-
ment in terms of F-measure by incorporating BTR, compared
to the case where no background refinement step is involved,
which has been presented in [15].

Table 5 presents the evaluation of segmentation results
that are produced using three thresholding schemes gener-
ated by Algorithm 3 for all the test sequences. The threshold-
ing schemes compared are (i) the well known Otsu
thresholding [24], which maximizes the ratio of inter/intra-
class variance, (ii) the weighted mean thresholding (WM) [14]
and (iii) the hysteresis weighted mean (HWM) as described in
Section 2.3 (an example is illustrated in Fig. 6(b)). In every
case, hysteresis mean thresholding outperforms the other two
thresholding algorithms in terms of segmentation efficiency.

Additionally, the number of correctly detected objects
is considered as quality measure. As described in Table 2,
the test sequences contain foreground objects with various
sizes that may move independently. As shown in Fig. 11,
the proposed algorithm detects foreground objects with
good accuracy. In the case of sequences with multiple
objects presence, at least 79.13% of the foreground objects
are detected with the proposed algorithm, 94.44% are
detected with Algorithm 1 and 77.83% with Algorithm 2,
whereas in sequences with single object presence (Biath-
lon, Mountain, BBC fish and Horse) the object is always
correctly detected. As it is observed, Algorithm 1 shows
higher detection rates than the proposed algorithm
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Fig. 12. Original frame and segmentation results of reference and proposed algorithms for Race sequence, frame 27. (a) Original frame, (b) Algorithm 3
without BTR and (c) Algorithm 3 with BTR.
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(Algorithm 3), which is also in agreement with the higher
recall rates in Table 3. However, these high detection rates
are followed by high false foreground detection rates,
which makes the performance of the proposed algorithm
in general better compared to Algorithm 1. In more details,
the average numbers of correctly detected objects in
Allstars are 88.41%, 69.24% and 79.74%, in the case of
algorithms 1, 2 and 3 (proposed) respectively, whereas in
Race these rates are 81.27%, 73.70% and 78.53% and finally
in Stefan, 95.17%, 93.50% and 94.67% respectively.

Regarding computational complexity, each part of the
proposed algorithm is examined separately. For a frame
with m�n pixels, bearing in mind that the number of
iterations (motion vector outlier rejection M, anisotropic
diffusion filtering, set of weights W, etc.) is fixed, and the
involved parameters (motion model, gaussian kernel, etc.)
have fixed size, the computational complexity of each
part of the algorithm is TGMEðm;nÞ ¼Oðn �m � logðn �mÞÞ,
TGMCðm;nÞ ¼ Terror gen:ðm;nÞ ¼ Tfilteringðm;nÞ ¼ Tweight sel:ðm;nÞ
¼ Tthresholdingðm;nÞ ¼ Tmorph:proc:ðm;nÞ ¼ TBTRðm;nÞ ¼ Oðn �mÞ.
The n �m log ðm � nÞ term in TGME derives from the Helm-
holtz Tradeoff Estimator algorithm, where the fitting
errors between all motion vectors and the preliminary
motion model are calculated, for a maximum of m=4� n=4
blocks of size 4�4 (pixels). After this calculation, the set of
errors has to be sorted in order to calculate the percentiles,
and this sorting results in this term. Thus, in the worst case
scenario, the complexity of the proposed algorithm is
Oðn �m � logðn �mÞÞ. Algorithm 2 involves the convergence
rate, κ, of the gradient descent [9], which determines its
complexity. Assuming that κ is not fixed, the computa-
tional complexity of Algorithm 2 is Oðn �m � κÞ, whereas in
case Algorithm 3 the complexity is the same as the
proposed one, since the fact that most of the included
steps have to be performed twice, does not change O.

Regarding runtime, the proposed algorithm needs 1.6 s
on average for a frame of a CIF sequence (Biathlon) under a
2.2 GHz AMD opteron 8354 with 48 GB RAM. From this
time, 0.97 s are used for GME, 0.11 s for GMC, 0.38 s for
filtering, 0.05 s for binarization, 0.01 s for morphological
processing and 0.12 s for BTR. More concisely, 1.1 s is
needed for GME/C and 0.5 s for segmentation which is
implemented in MatLab. The algorithm of Kameda and
Minoh [10] is not faster than the proposed algorithm, since
all the steps have to be performed twice, for each direc-
tion, before combining the segmentation masks using the
intersect operation. The algorithm [9] can save 75% of time
in the GME step, based on the code provided as an
executable by the authors. Comparing to the segmentation
performance, the proposed algorithm outperforms [10] for
20% and [9] 12% in terms of F-measure. The GME algorithm
that we employ here is based on the Helmholtz Tradeoff
Estimator which ensures robustness against noise. This is
reflected to the fact that the proposed algorithm outper-
forms Algorithm 1 in terms of segmentation efficiency and
the possible employment of a faster GME approach would
enable real-time application scenarios.

3.2. Segmentation of H.264/AVC compressed video data

In many application scenarios cameras are equipped
with encoding capabilities and the reference video is not
available at the decoder side for processing and extraction
of content information. We test our approach with video
streams from the state-of-the-art video coding standard
H.264/AVC as depicted in Fig. 15, where the input is the



Fig. 13. In the first row, F-measure is shown using reference Algorithms 1, 2 and proposed Algorithm 3 for the whole sequences. The second row shows
example frames of Mountain (frame 95), Stefan (frame 196) and Race (frame 15) and the third, fourth and fifth rows show the segmentation examples using
Algorithms 1, 2 and 3 respectively. (a) Mountain, (b) Stefan and (c) Race.
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decoded video sequence and the motion vectors are
extracted from the coded stream. The reference software
KTA [25] has been used. We perform evaluation using
motion vectors derived from H.264/AVC motion estimation
(IPPP …GOP structure, EPZS motion estimation with
32�32 search range, 4�4 smallest block size). A uni-
formly sampled 4�4 MV field is obtained by macroblock
splitting (e.g. when there is only one motion vector per
16�16 macroblock, its value is assigned in every 4�4
sub-block of it). In case of INTRA mode macroblocks, there
is no motion information and the macroblock is omitted
from GME and Gaussian filter calculation.

Table 6 presents the results, where motion vector fields
are obtained from encoding the test sequences with



Fig. 14. In the first row, F-measure is shown using reference Algorithms 1, 2 and proposed Algorithm 3 for the whole sequences. The second row shows
example frames of Biathlon (frame 173), Allstars (frame 162), BBC fish (frame 103) and Horse (frame 41) and the third, fourth and fifth rows show the
segmentation examples using Algorithms 1, 2 and 3 respectively. (a) Biathlon, (b) Allstars, (c) BBC fish and (d) Horse.
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various Quantization Parameters (QPAf4;16;28;38g) and
Fig. 16 provides an overview. The results show that our
approach is quite robust against bit rate changes, where
motion information is not always representing real motion
due to rate distortion optimization. By increasing QP, the
number of SKIP macroblocks is also increased resulting in
motion vectors with unreliable motion. Nevertheless, the
results appear to be quite stable; up to QP¼28 the
maximum loss, in terms of F-measure compared with the
QP¼4 case, is 1% and for QP¼38 the corresponding
maximum loss is 13% for the Horse sequence.

In the cases of Allstars, Stefan and BBC fish, a slight
increase (up to 2%) in terms of F-measure is observed by
increasing QP. This can be explained, considering the fact
that these sequences contain homogenous areas (soccer
field, tennis field, blue sea) which, by increasing QP, are



Table 6
Average Precision, Recall and F-measure for various quantization para-
meters. The PSNR column indicates average PSNR values (in dB) between
raw video sequences and ones coded with QP. ΔF ¼ FQP ¼ 4�FQP and
ΔPSNR ¼ PSNRQP ¼ 4�PSNRQP .
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increasingly blurred as a consequence of the H.264/AVC
deblocking filtering. This results in stronger blurring of
minor details (spots in the sports field, spots in the sea,
etc.) and also increases the number of large macroblocks
that potentially follow global motion, thus benefiting
global motion estimation and eventually segmentation.

Our approach can also be employed in cases of
B-Frames presence. The advantage in this case would be
the availability of motion vector fields from two directions
in the encoder, and the disadvantage that the motion
vector information may be prone to errors due to the
larger distance between reference frames and subse-
quently larger displacements. Regarding I-frames, that
contain no inter-frame motion displacement information,
the adjacent P-frames' segmentation masks could be
temporally interpolated in order to assign segmentation
masks to them. When applying our segmentation
approach on MPEG-2 streams, a slight quality decrease in
terms of F-measure should be expected as MPEG-2 only
Table 4
Contribution of the background temporal refinement to the performance
improvement in terms of average Precision (P), Recall (R) and F-measure
(F).

Sequence Without BTR [15] With BTR ΔF (%)

P R F P R F

Allstars 0.71 0.66 0.67 0.77 0.59 0.65 �1.6
Biathlon 0.71 0.94 0.80 0.78 0.87 0.82 þ1.6
Mountain 0.77 0.90 0.83 0.84 0.85 0.84 þ1.2
Race 0.63 0.87 0.73 0.74 0.83 0.78 þ5.2
Stefan 0.61 0.83 0.69 0.71 0.79 0.73 þ4.2
BBC fish 0.74 0.89 0.80 0.82 0.83 0.81 þ2.1
Horse 0.81 0.65 0.72 0.88 0.70 0.78 þ5.7

Table 5
Average F-measure for Otsu, weighted mean (wm) and hysteresis
weighted mean (hwm) thresholding algorithms.

Sequence OTSU [24] WM [14] HWM

Allstars 0.58 0.61 0.65
Biathlon 0.79 0.81 0.82
Mountain 0.82 0.82 0.84
Race 0.75 0.75 0.78
Stefan 0.69 0.71 0.73
BBC fish 0.75 0.76 0.81
Horse 0.67 0.68 0.77

Fig. 15. System input when imple
uses half-pel motion compensation, instead of quarter-pel
that H.264/AVC uses, and does not use deblocking filters.

4. Summary and conclusions

An unsupervised motion-based object segmentation
algorithm for video sequences with moving camera has
been presented. The proposed algorithm is based on
bidirectional inter-frame change detection and the pro-
posed motion compensated error fusion scheme outper-
forms the previously proposed ones. In addition to that,
spatial error localization is considered in the thresholding
step for improving segmentation efficiency in terms of
mented at the decoder side.

Sequence QP PSNR P R F ΔPSNR ΔF

Allstars 4 59.03 0.76 0.60 0.66 – –

16 47.18 0.76 0.59 0.65 �11.84 �0.01
28 37.71 0.76 0.61 0.66 �21.31 0.01
38 30.89 0.77 0.63 0.68 �28.14 0.02

Biathlon 4 59.89 0.77 0.88 0.82 – –

16 47.12 0.77 0.88 0.82 �12.77 0.00
28 38.01 0.77 0.88 0.81 �21.87 �0.01
38 31.69 0.74 0.88 0.80 �28.20 �0.02

Mountain 4 59.11 0.83 0.86 0.84 – –

16 46.11 0.83 0.86 0.84 �13.00 0.00
28 34.53 0.82 0.87 0.84 �24.58 0.00
38 27.01 0.81 0.87 0.83 �32.10 �0.01

Race 4 59.76 0.74 0.84 0.78 – –

16 46.57 0.74 0.84 0.78 �13.18 0.00
28 37.43 0.74 0.84 0.78 �22.33 0.00
38 30.89 0.73 0.79 0.74 �28.87 �0.04

Stefan 4 59.87 0.74 0.80 0.75 – –

16 46.43 0.74 0.80 0.75 �13.44 0.00
28 35.93 0.72 0.80 0.74 �23.94 �0.01
38 26.75 0.76 0.78 0.76 �33.13 0.01

BBC fish 4 59.46 0.81 0.84 0.82 – –

16 49.14 0.82 0.87 0.84 �10.32 0.02
28 42.98 0.82 0.82 0.81 �16.48 �0.01
38 36.67 0.78 0.72 0.74 �22.78 �0.08

Horse 4 59.99 0.90 0.66 0.76 – –

16 46.55 0.90 0.66 0.76 �13.45 0.00
28 34.84 0.90 0.66 0.76 �25.16 0.00
38 27.92 0.76 0.55 0.63 �32.07 �0.13



Fig. 16. Average F-measure for segmenting at decoder side under various
quantization parameters.
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F-measure. The issue of optimal weight selection for
weighted mean hysteresis thresholding is addressed
employing a statistical approach. This enables robust
segmentation performance that avoids heuristics and
training algorithms for parameter selection that are com-
mon approaches. Furthermore, a final post-processing step
is incorporated to enable temporal consistency of the
segmentation masks using filtering of the preliminary
binary masks, which is adapted according to the motion
of the foreground. The experimental evaluation demon-
strates the validity of the proposed method and is also
shown that it is quite robust under various quantization
parameters that influence motion estimation quality.
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Appendix A. Additional material

For the original and segmented video sequences with
reference and proposed algorithms, as well as further
F-measure, Precision, Recall curves refer to http://www.
nue.tu-berlin.de/research/stmos-br/.
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