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Abstract

Convolutional neural networks are a popular choice for
current object detection and classification systems. Their
performance improves constantly but for effective training,
large, hand-labeled datasets are required. We address the
problem of obtaining customized, yet large enough datasets
for CNN training by synthesizing them in a virtual world,
thus eliminating the need for tedious human interaction for
ground truth creation. We developed a CNN-based multi-
class detection system that was trained solely on virtual
world data and achieves competitive results compared to
state-of-the-art detection systems.

1. Introduction
The task of object detection in images and video is

among the most fundamental ones in computer vision.
There is a broad range of applications which are aided by
these detection systems, like assisted driving [4, 20, 19], in-
dustrial applications [34, 36] or video surveillance [45, 11,
43]. The basic principle is to extract image features like
HOG, SIFT, SURF [6, 30, 1] which are useful for a generic
description of instances of specific object classes. They are
then utilized to identify and localize those instances. For
convolutional neural networks (CNNs) [27, 25], those fea-
ture extractors are learned directly from a training dataset.
The great challenge is to find the common characteristics of
these features to separate multiple object classes that are ro-
bust to different scales, rotations or pose, illumination and
camera properties. Several methods have been proposed to
solve this task [13, 8]. In the case of CNNs, these classifiers
can be learned together with the respective features [29, 33]
or using additional machine learning methods [16, 18, 47].

For object detection in video, spatio-temporal informa-
tion can be utilized as well. In the case of static video
sources which are typical for surveillance scenarios, effi-
cient techniques like background subtraction [37, 9] can be

utilized to find possible objects. To do so, no a priori knowl-
edge about these objects is necessary [40, 35].

The availability of large labeled datasets is crucial for
training state-of-the-art CNNs [25, 16, 38]. There are
datasets available, like the ImageNet dataset [7] with over
14M images in over 21K categories or the Cityscapes
dataset [5] with 30 categories and 5K fine/ 20K coarse
grained pixel-wise annotated images. The first consists of
all kinds of images gathered from the internet, the latter
targets urban scene understanding for automotive applica-
tions. Creating the annotations requires great effort and
there is always a certain susceptibility to errors if performed
by humans. Automatic annotation methods are not gen-
erally applicable because every technique learned on this
data could implicitly inherit the flaws of the method used
to create it [26]. Sometimes it is also problematic to create
a training/testing dataset with specific characteristics, like
the presence of certain objects which are rare in real world
environments or hard to control, e.g. animals. It is also not
always possible to record data from specific views (aerial
etc.) or with an arbitrary number of cameras.

A possible solution to these problems is the usage of syn-
thetic datasets created in virtual world environments. Once
a system to generate these synthetic datasets is made, almost
unlimited data can be generated. Camera count and position
are obviously no longer an issue. Rare events or object oc-
currences can be staged at any frequency. Most important,
the ground truth can be generated with the used video en-
gine and is most certainly complete and pixel accurate. Ad-
ditionally, every scene can be rendered multiple times with
different illumination and weather conditions. This expands
the variety of the generated data.

In this paper we describe a system which is capable of
generating such synthetic datasets and we use it for train-
ing a multi-class object detector based on background sub-
traction and a CNN. We show that it is possible to detect
real world pedestrians, vehicles and animals in a reliable
manner, even without the usage of any real world data at
the training stage. The system shows competitive results
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to state-of-the-art object detectors on standard real world
datasets.

2. Related Work
Current state-of-the-art methods are the deformable parts

model (DPM) [13] or aggregate channel features (ACF) [8]
detectors. For the DPM, different parts of an object and
their positional relation are trained. The individual parts are
not part of the training data, only bounding boxes of the
whole object are used so that the latent model parts need
to be learned as well. The ACF detector calculates various
features on octave-spaced scale intervals and approximates
them on additional scales via extrapolation. Thereby sub-
stantial computational resources can be saved while losing
only a negligible amount of accuracy. These features are
then used to detect objects with an AdaBoost [15] classifier.

Some systems using virtual world data have been de-
ployed in the past. ObjectVideo virtual video (OVVV) [39]
is a visual surveillance simulation test bed which allows one
to test algorithms on real time camera data from a virtual
world. It supports multi-view scenarios with different cam-
era types (e.g. PTZ) and related distortions. Pedestrians can
be controlled either by the user, scripts or AI. The authors
report evaluations for tracking and background subtraction
methods on this data. In [31], a pedestrian detector using
HOG features and a linear SVM is developed. To train the
detector, synthetic training data from a simulated car drive
trough a virtual city is used. The authors also trained their
detector on real world data and came to the conclusion that
the performance of both versions is similar. It is shown in
[44, 46] that a pedestrian detector trained on many virtual
world and few real world samples achieves the same accu-
racy compared to a detector trained on real world data ex-
clusively. In [23] different image similarity features were
examined. The authors used photo realistic virtual world
scenes in order to obtain the same images with different
camera and lighting conditions.

The method presented in this paper is an extension of the
aforementioned systems but uses solely virtual world train-
ing data and performs multi-class object detection using a
CNN.

3. Dataset Synthesis
To generate scenes in a virtual world environment, the

game garry’s mod [12] is used. It is a sandbox game based
on Valve’s source engine [42] and enables the player to gen-
erate arbitrary scenarios or even game modes. To do so, the
resources from installed games based on the source engine
are available. This involves maps, characters, props and so
on. There are also lots of user-made resources available for
free [41].

The different object class instances in our system are

(a) Original (b) Bounding Box (c) Visible Mask

Figure 1. Illustration of the bounding boxes and pixel-accurate
masks: (a) raw image, (b) object bounding box (green) computed
using the model’s part specific hitboxes (yellow), (c) visibility
mask.

implemented as non-player characters (NPCs), also called
bots. These are characters which are controlled not by hu-
mans but by server scripts. Using the NextBot AI system
[3], three types of bots were implemented: persons, vehi-
cles and animals. They are initialized with random models
(visual appearances) and can roam over the map or move on
predefined tracks.

We implemented an add-on that allows to record and
render arbitrary scenes as well as to create and control the
NPCs in it. The ground truth is generated automatically and
contains the bounding boxes and pixel-wise masks of all
objects for each frame (see Figure 1).

3.1. Dataset creation

A publicly available dataset1 for training and testing was
generated on two different maps with a total of 200 NPCs
(100 each) and 15 static cameras in typical surveillance po-
sitions. Additionally, a set of negative frames without any
objects of interest was generated. Instead of using static
camera perspectives, we recorded a ”flight” through the
map and rendered the resulting images. Then, the training
images were extracted according to the following rules:

1. the bounding box around the visibility mask of an ob-
ject has an area of at least 35× 35 pixel,

2. all object bounding box corners are inside the frame,

3. the overlap of both boxes is at least 50%.

The first constraint rejects objects which are too small. The
second rule ensures that the object is completely in the field
of view. The third rule discards all objects which are oc-
cluded by more than 50%. All other objects are cropped in

1available at: http://www.nue.tu-berlin.de/mocat



(a) Dawn (b) Day (c) Dusk

Figure 2. Sample images of the virtual world with different illumination settings.

(a) Animals (b) Pedestrians (c) Vehicles (d) Negatives

Figure 3. Examples of extracted training images

square patches with an extra border of 10%. The negative
samples were cropped randomly from the negative frames
with a size between 35 × 35 and 200 × 200. Examples are
shown in Figure 3.

4. Proposed Object Detector

In our object detection system we use the common com-
bination of background subtraction and subsequent classi-
fication [22]. The summary of the method is as follows:
Firstly, the frames of an input video are segmented into
foreground and background pixels. Using this information,
potential objects are cropped from the frame and fed into
a CNN for classification. The object class with the maxi-
mum activation on the output layer of the network is then
assigned to the object while a minimal threshold tc ensures
a high confidence level.

This system is based on the assumption that the classes
are non-overlapping, meaning that an object cannot have
more than one class assigned. Typically only one or none
of the outputs is greater than tc.

4.1. Background Subtraction

Background subtraction is a popular tool in many video
surveillance applications in order to improve the runtime of
an analysis. A common choice is the use of gaussian mix-
ture models (GMMs) [37]. The history of every pixel is
described by K gaussian distributions and updated by an
EM algorithm like approximation. If a new pixel value falls
within 2.5 standard deviations of one of the K distributions
it is considered background, otherwise foreground. Many
improvements were made to this algorithm, like the split-

ting of over-dominant modes [10]. In our research we used
the SGMM-SOD algorithm [9] which handles two GMMs
in parallel. By a sophisticated initialization and updating
scheme of both models it can be prevented that newly intro-
duced objects fade into the background if becoming station-
ary. Therefore standing and waiting objects like pedestri-
ans can be detected continuously. The mask of foreground
pixels is then post-processed using morphological open and
close operations.

4.2. Classification Using CNN

Over the last few years, CNNs attracted significant at-
tention in the field of image classification. They show a
great ability to find and utilize common class specific char-
acteristics of images if given a large enough training dataset.
CNNs were introduced first to recognize handwritten digits
[27] in the early 90s, but a major breakthrough was achieved
2012 with the release of the AlexNet [25]. The basic prin-
ciple can be understood as a special case of the common
multilayer perceptron (MLP) where every neuron is only
connected to a receptive field in front of it. Additionally,
all neurons of a specific layer share the same weights. The
weighted input of a neuron with N inputs before applying
the activation function is:

v =

N∑
i=1

aiwi (1)

where a,w denotes the input from the previous layer and
weights respectively. With a two-dimensional constrained
receptive field and weight sharing, the formula can be
adopted for v at position x, y as follows:

vx,y =

x+N
2∑

i=x−N
2

y+N
2∑

j=y−N
2

wi,jax−i,y−j (2)

which can be implemented as the name-giving discrete,
two-dimensional convolution v = a ∗ w. To reduce the
amount of data and providing translation invariance, sub-
sampling layers are used. Most common is the max-
pooling, where the maximum value of the pooling area is
chosen.



Layer Dimension
Conv 1 24× 6× 6
Pool 1 3× 3
Conv 2 64× 3× 3
Pool 2 2× 2
Conv 3 96× 3× 3

Conv 4 64× 2× 2
Pool 3 2× 2
FC 1 256
FC 2 256
FC 3 4

Table 1. Net structure

Our net consists of 4 convolutional, 3 pooling and 3 fully
connected (FC) layers as shown in Table 1. It was trained
using the caffe framework [21]. The input dimension is
40× 40 pixel, random crops were taken from 48× 48 pixel
sized training images. For further data augmentation, ran-
dom mirroring was done. The stochastic gradient descent
solver was used, the weights were initialized gaussian with
σ = 0.01, µ = 0. The training was done over 3 epochs with
a momentum of 0.9 and a base learn rate of 0.01, decreased
by a factor of 10 after each epoch. To prevent overfitting,
50% dropout was used at FC1 and FC2.

4.3. Improvements

Bounding Box Splitting Since the CNN is only used to
classify the detected object candidates, it is crucial that they
describe individual objects separately. It is impossible to
distinguish between multiple visually overlapping objects
in the foreground mask, which may occur when people are
moving in groups. As a remedy, in our system bounding
boxes with atypical aspect ratios are split into smaller sub-
boxes with typical aspect ratios of e.g. pedestrians and the
classification is performed on these.

Temporal Filtering All objects with distinct overlapping
bounding boxes in consecutive frames are considered iden-
tical. Thus, the maximum activation and the class assign-
ment can be inherited from other frames if the current clas-
sification results are below the classification threshold tc.
This allows an increase in tc which results in a better false
positive rate. Also, ”gaps” in the detection of the same ob-
ject over time are avoided, lowering the false negative rate
as well. To determine identical objects over time, the inter-
section over union (IOU) is used:

0.2 ≤
Bt

i ∩B
t+1
i′

Bt
i ∪B

t+1
i′

(3)

where Bt
i describes the bounding box of the ith object at

the tth frame. If the threshold of 0.2 is met for exactly one
bounding box pair (i, i′) it is assumed that they both define
the same object.

These two improvements reduce greatly the occurrence
of false negatives as presented in the following experiments.

Figure 4. Sample of ground truth (yellow) vs. detection results
(green). The detection bounding boxes represent the persons ac-
curately but show poor matching results to the ground truth.

5. Experiments

In order to assess the detection performance of the pro-
posed method, experiments have been conducted on both
virtual and well-known real world datasets. The presented
results are computed with the development kit of the MOT
challenge [28]. The pedestrian detection ground truth
for the AVG-TownCentre sequence is taken from [2], for
PETS09-S2L1 it is included in the development kit. We no-
ticed a slight displacement noise in the ground truth (exam-
ples shown in Figure 4) which is probably due to its partial
generation using interpolation techniques (PETS09-S2L1)
and the simple position estimation based on the head po-
sitions (AVG-TownCentre). We therefore propose to use a
different IOU threshold tIOU = 0.2 instead of tIOU = 0.5
for computing the correct matches in the evaluation. This
parameter has also been used in the well-known CLEAR
performance evaluation protocol [24] and effectively allows
matches with inaccurate ground truth data. However, in or-
der to facilitate a comparison with other methods, we show
the results for both values in the evaluation.

5.1. Results on Virtual World Data

Table 2 shows the detection results on virtual world data
for multiple object classes. We conducted our experiments
on the same sequences for three different illumination set-
tings: dawn, day and dusk as shown in Figure 2. The per-
formance in dawn and day conditions are similarly good
while during dusk a lot more false positives are generated.
A manual inspection of the sequences suggests that they are
generally too dark for the background subtractor and CNN
to work properly.

In all cases, the reduced tIOU enhances the results due
to deviations in the region proposals of the background sub-
traction. The shadow detection seems less effective than on
real world data, thus rendering the extracted regions big-
ger. Also, during processing, the legs of pedestrians and
animals tend to be removed by morphological operations,
again changing the size of the bounding boxes. Hence, a
more relaxed tIOU improves the results in these cases.



Class FN FP Rec Prec MODA MODP FN FP Rec Prec MODA MODP
tIOU = 0.5 tIOU = 0.2

da
w

n

Person 12058 4256 54.8 77.5 38.9 83.8 10945 3143 59.0 83.4 47.2 59.1
Vehicle 10805 8932 82.3 84.9 67.6 87.5 7833 5960 87.1 89.9 77.3 69.9
Animal 6199 2165 64.8 84.1 52.5 84.1 5735 1701 67.4 87.5 57.8 61.6
All 29062 15353 72.4 83.2 57.8 86.3 24513 10804 76.7 88.2 66.4 66.6

da
y

Person 10126 4676 62.0 77.9 44.4 84.2 9256 3806 65.3 82.0 51.0 61.5
Vehicle 11705 8824 80.8 84.8 66.3 87.6 8779 5898 85.6 89.8 75.9 70.6
Animal 7270 1847 58.8 84.9 48.4 81.4 6620 1197 62.5 90.2 55.8 51.0
All 29101 15347 72.3 83.2 57.8 86.0 24655 10901 76.6 88.1 66.2 65.9

du
sk

Person 13093 11934 50.5 52.8 5.3 72.2 9535 8376 63.9 66.9 32.3 21.7
Vehicle 15922 9856 73.6 81.9 57.3 82.7 12146 6080 79.9 88.8 69.8 54.9
Animal 12919 3505 27.0 57.7 7.2 71.2 11213 1799 36.7 78.3 26.5 17.6
All 41934 25295 59.9 71.2 35.7 79.6 32894 16255 68.5 81.5 53.0 43.7

Table 2. Class specific results on virtual world data for the same scenes with different illumination settings.

Figure 5. Example of a multi-class detection on real world data.
The morphological operations ensure that the vehicle is detected
as a whole and not split by the lamppost. The people in front can
not be distinguished because they form a singular moving block,
although they are detected as a person. The person on the bike
shows that people in unusual poses that are not covered by the
training data can be detected as well.

5.2. Results on Real World Data

The real-world performance was evaluated on two com-
mon pedestrian detection datasets. Table 3 shows the com-
parison between our approach and the state-of-the-art meth-
ods DPM [13] (version 5 from [17] and pretrained on the
INRIA dataset [6]) and ACF [8] (results taken directly from
MOT 2015 challenge).

For the PETS09-S2L1 sequence with tIOU = 0.5, our
approach shows the lowest false positive count and lies in
between the reference methods with regard to precision.
However, the false negative count is higher and the recall

lower. This can be explained by the ground truth proper-
ties, as mentioned before, and changes drastically with a
reduced tIOU = 0.2. The reduced threshold improves also
the reference methods but especially in the false positive
rate, the proposed system shows a favorable performance
(up to 8-21 times fewer false positives compared to DPM
and ACF). The MODA measure (which includes false pos-
itive and false negative detections) for our baseline method
shows a performance between the two reference methods.

The bounding box splitting and temporal filtering steps
especially reduce the false negative count. When both
are applied, the false negative count is reduced by over
35% without a significant computational overhead. The
bounding box splitting introduces additional false positives,
mainly because single pedestrians might also be split and
both splits are positively classified. The effect of these few
false positives is less important compared to the improve-
ment as can be seen by looking at the MODA values.

The AVG-TownCentre sequence poses additional prob-
lems as many overlapping detections can be found. This
reduces the performance for all methods considerably com-
pared to PETS. The main findings, however, are similar to
the PETS evaluation. The proposed system shows a re-
duced number of false positives and a higher number of
false negatives which can be reduced using bounding box
splits and temporal filtering. The MODA metric in case of
tIOU = 0.2 shows that the proposed system performs better
than ACF but worse than DPM.

For a more complete comparison we exchanged our
CNN, that was trained solely on the virtual world data with
the BVLC reference implementation of the R-CNN that
ships with the caffe framework. We see the lowest rate for
false positives for all experiments at the expense of the high-
est false negative counts. Indeed, these results are biased be-
cause the R-CNN is a magnitude greater with regard to net
structure, parameter size and computational effort. There-
fore its classification performance can not be compared to
our net directly.



Method FN FP Rec Prec MODA MODP FN FP Rec Prec MODA MODP
tIOU = 0.5 tIOU = 0.2

PE
T

S0
9-

S2
L

1
[1

4]

DPM [13] 756 639 83.1 85.3 68.8 75.9 628 511 86.0 88.3 74.6 32.3
ACF [8] 392 1494 91.2 73.2 57.9 71.7 162 1264 96.4 77.3 68.1 15.6
ours 1734 629 61.3 81.3 47.2 75.0 1165 60 74.0 98.2 72.6 24.6
ours + BS 1308 521 70.8 85.9 59.1 74.8 935 148 79.1 96.0 75.8 25.6
ours + TF 1613 664 64.0 81.2 49.1 74.9 1011 62 77.4 98.2 76.0 24.2
ours + BS + TF 1125 557 74.9 85.7 62.4 74.7 729 161 83.7 95.9 80.1 25.3
ours + BS + TF +
BVLC R-CNN

1217 357 72.8 90.1 64.8 75.1 923 63 79.4 98.3 78.0 27.0

AV
G

-T
ow

nC
en

tr
e

[2
] DPM [13] 1873 1312 73.8 80.1 55.4 72.4 1583 1022 77.8 84.5 63.5 18.8

ACF [8] 3382 1649 52.7 69.5 29.6 71.2 2914 1181 59.2 78.2 42.7 12.6
ours 4237 1756 40.7 62.3 16.1 67.7 3040 559 57.4 88.0 49.6 6.7
ours + BS 4064 1956 43.1 61.2 15.7 67.5 2901 793 59.4 84.3 48.3 6.7
ours + TF 4161 1861 41.7 61.6 15.7 67.7 2938 638 58.9 86.8 49.9 6.7
ours + BS + TF 3978 2021 44.3 61.0 16.0 67.5 2801 844 60.8 83.7 49.0 6.7
ours + BS + TF +
BVLC R-CNN

4809 450 32.7 83.8 26.4 68.7 4372 13 38.8 99.5 38.6 9.2

Table 3. Results on real world data for two common datasets. DPM and ACF are state-of-the-art detectors for reference. BS denotes the
bounding box split improvement, TF the temporal filtering. BVLC R-CNN denotes the usage of the R-CNN reference model shipping with
caffe instead of our CNN trained solely on the virtual world data.

Figure 6. Sample detections on the PETS09-S2L1 sequence. Note
that the two people in the back are detected as a singular block
but are split correctly. The person behind the lamppost, although
partly covered, is detected completely.

Exemplary detection results for the proposed system are
shown in Figure 6. Due to the unavailability of related de-
tection videos for the multi-class detection, no numerical
results can be given, but samples are shown in Figure 5.

Table 4 shows the achieved detection speeds of the pro-
posed system. For 768× 576 pixel resolution, 13.5 Hz can
be obtained and for 1080p videos still 3.4 Hz are possi-
ble. A great share of the detection time is consumed by the
SGMM-SOD background subtraction algorithm which han-
dles two background models in parallel. The classification
is mainly performed on the GPU and the background sub-
traction on the CPU. Thus, a pipelined evaluation of both
steps could improve the performance to a factor of ∼ 2.

Seq. Resolution #Fr. Method Time Hz

PETS 768× 576 795
SGMM-SOD 30s 26.5
Main 59s 13.5
R-CNN 3m43s 3.5

AVG 1920× 1080 450
SGMM-SOD 81s 5.5
Main 1m43s 3.4
R-CNN 5m32s 1.6

Table 4. Performance overview for the test sequences: SGMM-
SOD shows the run-time for background subtraction only. Main
denotes the runtime with our CNN, R-CNN in conjunction with
the BVLC reference model of the R-CNN.

6. Conclusion
In this paper we proposed a system for automated dataset

generation for object detection algorithms using virtual
world data and showed that a CNN-based approach trained
on this data can achieve similar results to state-of-the-art
detection methods trained on real-world images. The auto-
mated annotation system avoids the previously tedious task
of manual ground truth creation and can be extended easily
to multiple object classes. The work shows that a CNN-
based object classifier can perform competitively in the de-
tection of multiple object classes like pedestrians, vehicles
or animals without using any real-world training samples.
This contributes to solving the need of evermore labeled
training data to train new and bigger classification methods.
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