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ABSTRACT
In a broad range of computer vision tasks, convolutional neu-
ral networks (CNNs) are one of the most prominent tech-
niques due to their outstanding performance. Yet it is not
trivial to find the best performing network structure for a spe-
cific application because it is often unclear how the network
structure relates to the network accuracy. We propose an evo-
lutionary algorithm-based framework to automatically opti-
mize the CNN structure by means of hyper-parameters. Fur-
ther, we extend our framework towards a joint optimization
of a committee of CNNs to leverage specialization and coop-
eration among the individual networks. Experimental results
show a significant improvement over the state-of-the-art on
the well-established MNIST dataset for hand-written digits
recognition.

Index Terms— Image Classification, Convolutional
Neural Network, Evolutionary Algorithm, MNIST, Hyper-
parameter Optimization

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have demonstrated
superior performance on a variety of computer vision tasks
in recent years. The success of CNNs is not only caused by
the outstanding performance, e.g. in automated image pro-
cessing or video-based classification and recognition systems.
CNN-based methods impose a shift of design and engineering
efforts from hand-crafted features, e.g. HoG [1] for image
processing or LaSIFT [2] for video processing, towards the
design of network connectivity structures, extensive training
phases with considerable amounts of data and suitable opti-
mization strategies.

The optimal choice of hyper-parameters is one of the ma-
jor challenges when applying CNN-based methods. To our
knowledge, there are no reliable approaches to identify spe-
cific network structures that may lead to significant perfor-
mance improvements. In practice, this means that the network
structures are often chosen by an ”educated guess” rather than

a reasoned decision. Since a broad range of CNN network
structures yield good results, it stays unclear if a current solu-
tion obtains optimal or near optimal configurations or if dif-
ferent structures can improve previous results.

In this paper we define hyper-parameters as the configu-
ration of the network structure and thus pose the problem of
finding the optimal configuration of a CNN as an optimization
problem of hyper-parameters. In the literature, the optimiza-
tion of hyper-parameters has been addressed e.g. by Bergstra
and Yoshua [3] who proposed to apply a grid or random fash-
ion search. Since the hyper-parameter space is in general
large and testing is computationally expensive, the need for
a more structured way of searching this space arises. More
sophisticated methods for hyper-parameter optimization have
been proposed by Snoek et al. [4] with a Bayesian optimiza-
tion framework and by Miguel et al. [5] and Hutter et al. [6]
who applied evolutionary algorithms (EAs).

In recent times, the performance of CNN-based systems
was further improved by building committees of multiple
CNNs [7, 8, 9]. In [8], Lui et al. proposed negative correla-
tion learning to train multiple neural networks simultaneously
and interactively by adding a penalty term for correlation to
the error function and thus promote cooperation and special-
ization among the networks. Chen et al. [9] applied this
technique to Radial Basis Function Networks and introduced
an additional regularization term. To obtain the optimal trade-
off between empirical error, correlation and regularization,
they integrated a multi-objective EA. In [7], Ciresan et al.
proposed to average the output of multiple CNNs. This sim-
ple, yet effective approach is based on the idea that if the
errors between networks are uncorrelated, they can be re-
duced by averaging. To reduce correlation of the prediction
errors, they proposed different methods of pre-processing and
normalizing the input data.

The objective of this paper is twofold: 1) we propose an
efficient hyper-parameter optimization strategy for the CNN
network structure based on an evolutionary algorithm and
2) we extend the EA-based hyper-parameter optimization
towards a committee of multiple CNNs. We describe the
proposed EA-based hyper-parameter optimization scheme in



Section 2. In this work we focus on hyper-parameters that de-
scribe the structure of a CNN such as layer and kernel sizes.
Other training-related hyper-parameters will not be consid-
ered as modern optimizers, e.g. [10], are not sensitive against
variations and consequently need no extensive tuning. In
Section 3 we present our approach to generate reliable com-
mittees of CNNs. The performance of the proposed system
will be evaluated on the MNIST dataset [11] for hand-written
digits recognition in Section 4.

2. HYPER-PARAMETER OPTIMIZATION USING
EVOLUTIONARY ALGORITHM

The goal of this section is to find an optimal CNN network
structure which will be encoded as a set of hyper-parameters.
Therefore, we define the hyper-parameter h = {hconv,hfc}
as the set of structural parameters composed by hconv , the
parameters of the convolutional layers, and hfc, the param-
eters of the fully connected layers. The convolutional layer
parameter set is given by hconv = {l0, . . . , ln−1, } where
li = (kcount, ksize) denotes the configuration tuple of the ith

layer, i.e. number of kernels kcount and the kernel size ksize.
The fully connected layers are defined by hfc = {s0, sn−1}
with si being the layer size. LetH be the set of possible CNN
configurations. Then the goal of the hyper-parameter opti-
mization is to find a configuration h ∈ H that minimizes the
application-specific error of the respective CNN.

Since the solution space is discrete and thus the error func-
tion is not continuous nor differentiable, traditional optimiza-
tion approaches such as gradient-decent are not applicable.
Therefore we propose to use evolutionary algorithms (EAs)
which are able to deal with these challenging conditions. EAs
are biologically inspired by Darwin’s theory of evolution. The
core aspect of EAs is based on the concept of survival of the
fittest in a population P which is defined as a set of individ-
uals. The individuals contain the parameters to be optimized.
Thus the population is a set of samples in the solution space.
During optimization, the population P is evolved in a two-
step manner: at first individuals are modified by crossover
and/or mutation. Then a fitness-based selection is applied to
produce the next generation. This means the EA is an itera-
tive process and the optimum is sought from different posi-
tions simultaneously. Hence trapping in local minimum can
be avoided [12].

In this work we define an individual by the hyper-
parameters h. The layers li are sorted from convolutional
to fully connected. The convolutional layers itself are sorted
in descending order first based on ksize and then based on
kcount. The fully connected layers are sorted in descending
order based on s. In the context of EAs, the items of the layer
tuples li as well as the fully connected layer sizes si are de-
noted as genes. This strict sorting scheme reduces the amount
of possible network configurations drastically and thus limits
the solution space. We assume that optimal networks are

within these boundaries and that most implausible configu-
rations can be excluded, such as alternating convolution and
fully connected layers. The population at a given time step t
consists of µ individuals so that P t = {h0, . . . ,hµ−1}.

We use the (µ + λ) evolutionary algorithm where λ de-
notes the number of offspring individuals evolved by muta-
tion and crossover. The λ offsprings are equally generated by
applying crossover and mutation to a set of randomly sampled
individuals from the parent population. We apply a one-point
crossover method which exchanges all genes after a randomly
selected position in the genome of two individuals. The mu-
tation contains two operations: the variation and the elimina-
tion or creation of a gene. The variation is implemented by
the polynomial bounded mutation function of the NSGA-II
algorithm [13]. The value x of a gene is updated to x′ with a
certain probability pm as follows:

x′ = bmin(max(x+ δq(xu − xl), xl), xu)c (1)

with

δq =

{
2δ1 − 1 , u < 0.5

1− 2δ2 , u ≥ 0.5

δ1 =

(
u+ (0.5− u)

(
1− xi − xl

xu − xl

)η+1
) 1
η+1

δ2 =

(
1− u+ (u− 0.5)

(
1− xu − xi

xu − xl

)η+1
) 1
η+1

and x, x′ ∈ [xl, xu] where xl and xu are the lower and
upper bounds of the respective genes, η denotes the distri-
bution index and u ∈ [0, 1] being a value sampled from a
uniform distribution. The elimination or creation operators
are applied with the same probability pm and are restricted
by the boundary conditions of maximal and minimal layer
sizes for the convolutional and fully connected layers. If the
hyper-parameter h of an individual has not been changed, the
weight-parameters of a CNN will not be re-trained.

The first population P 0 is generated by a random sam-
pling of the solution space in predefined boundaries. In the
next step an interim population P tµ+λ is constructed with µ
individuals of the parent population P t and λ offspring indi-
viduals. The next generation P t+1 is then created by selecting
the µ fittest individuals of the interim population P tµ+λ. The
fitness function f(h) equals the classification error e(h) of
the respective CNN structure h trained with the training data
and evaluated with validation data of the respective dataset.
This iterative process is terminated after a predefined number
of γ generations.

3. JOINT OPTIMIZATION FOR COMMITTEES OF
MULTIPLE CONVOLUTIONAL NETWORKS

In the previous section we have proposed an optimization
method of the CNN network structure that finds the best



Parameter Value
γ 50
µ 30
λ 10
pm 0.3
η 5

(a) EA Parameters

Parameter Value
Conv Layers 0-6
Kernel Size 1-8
Conv Layer Size 1-128
Initial Conv Layers 2-4
FC Layers 0-4
FC Layer Size 16-2048
Initial FC Layers 1-2

(b) Boundaries &
Initialization

Parameter Value
Optimizer Adam
α 0.0001
Dropout (FC) 50%
Act. Function ReLU
Batchsize 100
Train Epochs 30
Cost Function MSE

(c) CNN training parameters

Table 1: Parameters used in all experiments

performance of a single CNN. In order to further improve
the classification performance, committees of multiple CNNs
will be used. A committee is a set of K trained CNNs where
the classification is performed by fusing the CNN scores. We
use the average of the decision values over the K CNNs.
In theory, the lowest average error is obtained if the clas-
sification errors of the K CNNs are uncorrelated [7]. For
that reason we propose a novel fitness function that takes the
global classification error of the population into account:

f(hm) =

N∑
j

ej(hm) ·

(
µ+λ∑
i

ej(hi)

)k
, hm,hi ∈ P tµ+λ

(2)
where hm is the mth hyper-parameter associated with the
mth CNN of the current interim population, ej(h) ∈ {0, 1}
denotes the classification error of the jth sample of the vali-
dation dataset of size N and k being a penalty exponent. If
the current CNN misclassifies a sample j, the penalization
depends on the classification error of the whole population.
With the penalization k > 1 this effect can be enhanced.

To build a committee, we first perform the hyper-parameter
optimization as in Section 2, based on the modified fitness
function in Eq. 2. The committee then consists of theK fittest
CNNs when considering all evaluated hyper-parameter con-
figurations. An alternative approach could be an exhaustive
search for better committees as analyzed in [7], however due
to the large amount of possible combinations this is not feasi-
ble. We believe a fixed strategy of selecting the committee is
a good trade-off between accuracy and complexity.

4. EXPERIMENTS

In this section we evaluate the proposed evolutionary based
hyper-parameter optimization for CNN committees. The ex-
periments were conducted on the well-known MNIST [11]
classification dataset. It consists of 28 × 28 pixel sized
grayscale images of handwritten digits (0-9) and is divided
into 60,000 training and 10,000 test samples. We further
split the training set into 50,000 images for CNN training
and 10,000 images for validation. The pixel range of the
images is scaled from [0, 255] ∈ Z to [0, 1] ∈ R. No further
preprocessing or augmentation is done on the data.

All CNNs are trained using the tensorflow library [14].
Optimization is done using the Adam algorithm [10] with the

configuration shown in Table 1c). No padding is used at the
convolutional layers and no pooling layers are included. The
training samples are permuted after each epoch. If the train-
ing loss falls below the validation loss, early stopping is per-
formed and the training is terminated. Otherwise it is con-
tinued until a maximum count of training epochs is reached.
This is done to prevent overfitting and to reduce the training
time.

The implementation of the EA algorithm is based on the
DEAP evolutionary computation framework [15]. The pa-
rameters of the EA used for all experiments have been chosen
empirically and are shown in Table 1 a) and b) with a com-
mittee size of K = 34 CNNs.

In our experiments we compare the performances of the
evolutionary based hyper-parameter optimization for inde-
pendent CNNs (IEA-CNN) and the proposed joint optimiza-
tion for a committee of multiple CNNs (CEA-CNN). Figure
1 shows the evolution of individuals for evolving generations
related to the error rate. Each line of a specific color denotes
a single individual and its classification error. In both sce-
narios the initial generation achieved accuracies below 0.8%,
except for some outliers not included in the graphs. This
shows that many network structures yield good results when
being initialized randomly. The results show a higher rate of
convergence for the independently optimized CNNs than for
the joint optimized population. The CNNs obtained by joint
optimization have a higher variance in terms of error rate.
It appears that some well-performing networks have been
discarded while some worse performing networks have been
maintained due to separation of the dataset set into validation
and test data for the hyper-parameter optimization and the
final evaluation. However, no significant overfitting to the
validation data has been noticed.

At a first glance, IEA-CNN tends to be more accurate then
the CEA-CNN due to the higher rate of convergence consider-
ing the individual error rates. The evolution of the CEA-CNN
accuracy (green doted line in Figure 1b) shows that regardless
of the higher variance in the population and the lower conver-
gence rate, the total error rate is converging to a lower error
level than for the individual case. We assume that the higher
variance indicates a higher ability of specialization and coop-
eration between the individual CNNs.

Figure 1 b) (right) shows the distribution of the fitness val-
ues referring to Eq. 2 for each individual during the joint opti-
mization process, as well as the minimal and maximal bounds
and the average curve for a better comparison. The experi-
mental results show that when an individual with a particu-
larly low fitness is found, the mean fitness of all individuals
in the following generations drops significantly.

The mean number of training epochs ranges from 16 to
20 in the first and last generation for CEA-CNN which is sig-
nificantly less than compared to recent approaches [7]. As a
result, the training of a single CNN is less computationally ex-
pensive and allows evaluating more individuals to improve the
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(a) Independent CNN optimization (b) Joint committee optimization for k=2

Fig. 1: Distribution of individuals during the hyper-parameter optimization for (a) independent CNN optimization and (b) joint
committee optimization. The error rate of each individual is represented as a line. The dotted line in (b) shows the accuracy
of the committee. The right plot (b) shows the distribution and development of the fitness values referring to Eq. 2 of the
individuals in the population.

sampling of the solution space. The CNNs in the final pop-
ulation consists of 4-5 convolutional layers and 1-3 (mostly
2) fully connected layers. These structures are considerably
deeper than in [11, 16, 17] but not as deep as in [18]. The ker-
nel sizes range from 8×8−7×7 to 4×4−3×3, where some
networks have also a 1×1 layer and/or start with a 6×6 layer.
This surprises since normally smaller kernel sizes are used
for this input size. The last population of the single network
optimization is less diverse. The most typical structure can be
described as hconv = {(107, 7), (88, 7), (123, 6), (102, 3)}
and hfc = {104} with only minor deviations, mostly in the
last layers.

Table 2 concludes the results of our experiments for the
independent EA-based optimized CNN (IEA-CNN) and the
joint EA-based committee optimization (CEA-CNN) with
varying penalization k. We compare these results with a
subset of representative state-of-the-art methods not using
augmentation on the training data. It shows that the EA-
based optimized IEA-CNN network, which applies a very
baseline CNN, is competitive to the recent state-of-the-art.
Moreover, the joint based hyper-parameter optimization of
the committees significantly outperforms the IEA-CNN as
well as recent approaches. It can be shown that CEA-CNN
performs best with k = 2. Figure 2 shows all misclassified
samples of the MNIST dataset.

5. CONCLUSION

We proposed an evolutionary algorithm-based hyper-parameter
optimization approach for committees of multiple CNNs. The
objective is to optimize the structure of a CNN in relation to
the performance of a committee rather than the individual
accuracy. Therefore, we proposed an evolutionary algorithm-
based hyper-parameter optimization scheme and a novel
fitness function supporting this objective. The experiments
on the MNIST dataset demonstrate significant improvements

Method Test Error in %
LeNet-5 [11] 0.95
Deeply Supervised Net [16] 0.39
Schallow CNN [17] 0.37
Recurrent CNN [19] 0.31
Gated Pooling CNN [18] 0.29
IEA-CNN 0.34
CEA-CNN, k=1 0.26
CEA-CNN, k=2 0.24
CEA-CNN, k=3 0.28

Table 2: MNIST classification error: comparison of state-of-
the-art methods without using any augmentation on the train-
ing data.

Fig. 2: All 24 classification errors for k=2 of the 10,000
test images. The upper and bottom left numbers indicate the
ground truth and classification results respectively.

to the state-of-the-art. This is mainly due to the ability of
the joint optimized committee to leverage specialization and
cooperation among the individual CNNs. Since the proposed
optimization framework is generic to any type of networks
and tasks, we plan for future work to apply this technique to
more sophisticated CNN approaches such as R-CNNs [19].
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Marc-André Gardner, Marc Parizeau, and Christian
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