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Crowd Violence Detection Using Global
Motion-Compensated Lagrangian Features and

Scale-Sensitive Video-Level Representation
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Abstract—Lagrangian theory provides a rich set of tools for
analyzing non-local, long-term motion information in computer
vision applications. Based on this theory, we present a specialized
Lagrangian technique for the automated detection of violent
scenes in video footage. We present a novel feature using
Lagrangian direction fields that is based on a spatio-temporal
model and uses appearance, background motion compensation,
and long-term motion information. To ensure appropriate spatial
and temporal feature scales, we apply an extended bag-of-words
procedure in a late-fusion manner as classification scheme on a
per-video basis. We demonstrate that the temporal scale, captured
by the Lagrangian integration time parameter, is crucial for
violence detection and show how it correlates to the spatial
scale of characteristic events in the scene. The proposed system
is validated on multiple public benchmarks and non-public,
real-world data from the London Metropolitan Police. Our
experiments confirm that the inclusion of Lagrangian measures
is a valuable cue for automated violence detection and increases
the classification performance considerably compared to state-
of-the-art methods.

Index Terms—violence detection, lagrangian theory, lagrangian
measures, crowd analysis, local feature, action recognition, long-
term motion

I. INTRODUCTION

THE rapid increase in the number of deployed video
surveillance cameras fosters both an improvement of the

analytical methods used with these cameras and the research of
upcoming analysis techniques. A major research focus lies on
the development of intelligent systems supporting the analysis
of a huge amount of closed-circuit television (CCTV) footage
in order to disburden the operator of the need to view all the
data manually.

As an important example, the analysis of specific human
actions, such as violence in crowds, has recently attracted a
lot of attention in the computer vision community. However,
while the task of automated detection of violence in movie
databases [1] has inspired many works in this field, the area
of video surveillance has not yet been studied sufficiently.
Motion picture footage usually provides cues for multi-modal
data analysis (e.g., fusion of audio, video, and contextual
data [2]), leading to high-performing algorithms. In contrast,
video surveillance data poses a number of difficulties: At the
one hand, in most cases no audio information is available. On
the other hand, video information quality is usually far below
movie standards. Due to the need to operate continuously
over months or years, a constant image quality in terms of
contrast or color cues can often not be expected. Despite

the rising number of high-resolution cameras, most existing
CCTV cameras record in lower resolutions, such as VGA
(640×480) or CIF (352×288). In addition, it is often unclear
where events will occur in a scene in which an operator is
interested. Consequently, CCTV cameras tend to show more
overview with fewer details, cover longer periods of time, and
they may not always be focused appropriately.

First approaches for violence detection (e.g., [3], [4]) focus
on the microscopic level, meaning that a crowd is modeled
by individuals and their specific behavior can be analyzed.
Such methods usually have difficulties with CCTV footage of
crowded scenes since individual persons need to be detected
and tracked in the crowd robustly over a longer time. As a
remedy to these problems, the macroscopic point of view has
been proposed for the detection of violent crowd behavior [5].
Macroscopic methods do not consider individual pedestrian
behaviors, but treat the crowd as an entity and perform their
analysis based on the properties extracted from the whole
scene. Especially motion information has been shown to carry
important cues for detection of violent human actions in
videos and crowds. To exploit motion information, different
feature descriptors have been proposed which often benefit
from the performance increase of recent optical flow-based
motion estimation techniques.

From the survey of recent violence detection methods it can
be concluded that motion information is a key property for
detecting violence in videos. Most current methods (i.e. [6]–
[10]) only consider two-frame (local or short-term) motion
retrieved by optical flow between two consecutive frames.
However, most characteristic motion signatures in a video
are inhomogeneous over time and are potentially non-local
in time. For instance, the process of kicking or punching
has several phases composed by multiple individual long-term
motion pattern sequences. It would thus be advantageous to
encode these patterns into a representation that comprises the
motion signature of multiple frames. In the field of action
recognition, descriptors based on long-term trajectories, e.g.
the improved dense trajectories [11], retrieved by computing
dense optical flow fields or tracking feature points, constitute
a significant step towards better performances. Wang et al.
showed in [11] that densely sampled trajectories have the
advantage of high discriminative power on a variety of datasets
but also have a high computational complexity and high
memory demand.

In our previous work, we have proposed a framework on
Lagrangian methods for video analytics [12] as an generic
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concept for integrating motion information over multiple tem-
poral scales: The concept is based on the numerical integration
of fieldlines that denote trajectories (or virtual particle traces)
in the time-dependent optical flow field sequence. The compu-
tation of field lines is based on standard integration schemes
(like Runge-Kutta) and does not require an explicit tracking or
object identification step. These integral field lines and their
properties gained significant attention in the field of video
analytics: Similar frameworks have been used successfully
in the field of video-based crowd analysis [13], [14] and
crowd motion segmentation [15], [16]. With our previous
work on person-oriented human action recognition [17] and
people carrying baggage recognition [18], we showed the
efficiency of the proposed framework on Lagrangian methods
to describe long-term motion features for a variety of video-
based surveillance applications.

In this paper we propose a violent video detection method,
based on the Lagrangian methodology, with focus on a robust
performance for challenging video surveillance data. This
work is based on Lagrangian local features [19] and the bag-
of-word model video-level representation. We extended our
bag-of-word models in order to take the scale information of
the local features into account. This will allow to generate
distinct Lagrangian-visual vocabularies for motion patterns of
different spatial sizes. In addition we apply a background
motion compensation scheme to take account for dynamic
camera motion within the scene. As a proof-of-concept and
to substantiate the performance of the system, we tested our
approach using real-world data from the London Metropolitan
Police (London Riots 2011) and common violence detection
benchmarks for comparison.

The remainder of this paper is organized as follows: In sec-
tion II we review the current state-of-the-art and and relevant
work for violent video classification. Section III briefly reviews
the theory behind Lagrangian measures for video analytics,
section IV presents the proposed Lagrangian Scale Invariant
Feature Transform (LaSIFT) descriptor, based on a specialized
direction measure. In section V, we follow the bag-of-words
paradigm to encode a word frequency histogram for each video
and classify each video into ’violent’ or ’non-violent’ using
a support vector machine. Experimental results are presented
in section VI, which covers suitable parameter setups, an
benchmark on datasets for automated violence detection, and
real-world datasets from London Metropolitan Police. Section
VII concludes the paper and provides an outlook to possible
future work.

II. RELATED WORK

In general, two major concepts can be found for the classifi-
cation of violent videos: global descriptors or local feature rep-
resentations. Hassner et al. introduced the global Violent Flows
(ViF) descriptor based on statistics of flow vector magnitude
dynamics over time. They showed that such features classified
with linear support vector machines are able to achieve real-
time performance [9]. Real-time performance was one goal
of Déniz et al. [7], who proposed a global descriptor that
implicitly measures the acceleration of the global motion by
comparing the power spectrum of consecutive video frames.

Local features have been first developed for the task of
action recognition, where the common state-of-the-art methods
are based on space-time interest point (STIP) [20] detections,
histograms of oriented gradients (HoG) [21] or histogram of
flow (HoF) [6] descriptors. De Souza et al. [22] presented
an approach for violence detection based on local features.
They compared STIP with the scale invariant feature transform
(SIFT) [23] and showed that spatio-temporal features improve
the detection performance compared to pure spatial SIFT.
Hassner et al. showed in [9] that such feature representations
fail on a newly proposed Crowd Violence dataset. They found
that STIP is better suited for so-called ”structured video”
instead of CCTV footage which they consider ”more textural”
videos. Similar results are given by Nievas et al. in [8]. In
their work, they compare the performance of the generalization
capacity between STIP and Motion SIFT (MoSIFT) [24]
features by using the Hockey Fight dataset [8] for training
and the action movie database [8] for the testing phase and
found that MoSIFT outperforms STIP. The MoSIFT feature
has been proposed by Chen et al. [24] as an extension of
the SIFT feature containing additional motion information.
Further improvements were proposed by Xu et al. [10] who
substituted the bag-of-words step with a sparse coding scheme
to encode MoSIFT features for violent video detection. A
different approach has been proposed by Mohammadi et al.
with the Visual Information Processing Signature (VIPS) [25]
feature. The VIPS is based on heuristic motion based rules
that are related to acceleration, body compression and the
aggressive drive in the video.

Apart from MoSIFT, the most related approaches to ours
are the tracklet-based descriptor proposed by Mousavi et al.
in [26], the Substantial Derivative proposed by Mohammadi
et al. in [27] and the local mid-level visual description (MLV)
proposed by Fradi et al. in [28]. The relation with [26]
and [28] is that they provide a description for long-range
motion patterns based on motion-trajectories. In addition, the
tracklet-based descriptor [26] has shown to outperform dense
trajectories for the Crowd Violence dataset. The relation with
[27] is that it utilizes a concept from fluid dynamics and shows
to be an appropriate feature for the classification of violence
in videos.

III. LAGRANGIAN MEASURES FOR VIOLENT VIDEO
DETECTION

Lagrangian methods are commonly used to describe non-
linear dynamic systems that can be described by a series
of time-dependent fields. Commonly, properties of such sys-
tems are characterized by motion vector fields describing
its dynamics, e.g. the physical motion of particles in fluid
flows. Lagrangian methods quantify properties of each particle
while moving within the flow field and reveal intrinsic motion
patterns that are governed by the temporal evolution of the
system. In our case, we adopt those concepts to a sequence
of optical flow fields, which characterize the transport of
information within an image sequence over time. Lagrangian
fields can be derived by computing different types of field
lines (or integral curves) within such a time-dependent flow
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a) streamlines b) pathlines

c) streaklines d) timeline

Fig. 1. Overview of different field line types (green color) that can be derived
from a time-dependent optical flow field.

field. An overview about existing field line types are shown in
figure 1. Streamlines (Fig. 1 a) are computed by integrating a
single time step and consequently only describe a single state
of the dynamic system. Streamlines represent the properties of
that time step and closely relate to its topological features (e.g.,
points of zero-velocity or noise). Alternatively, streamlines can
be used to analyze time-averaged flow fields (e.g. see Ali et
al. [15]) at the cost of losing or displacing non-stationary
motion features. Pathlines (Fig. 1 b) directly characterize the
transport within the underlying flow field over time. They map
a single seed point to a new position at each point in time,
while this mapping for all pathlines at a specific time interval
is denoted as the flow map. For optical flow applications,
each trajectory point ideally corresponds to the same piece of
information at each frame, while this might by violated during
integration, e.g., due to occlusion or optical flow artifacts.
Streaklines (Fig. 1 c) map a stationary point to its integrated
positions and describe the evolution of pathlines that pass this
point over time. They are commonly used to observe physical
phenomena in numerical simulations, since they are easy to
reproduce in real-world setting (e.g. by continuously injecting
smoke into a flow field at a fixed position). Timelines (Fig. 1
d) capture the progression of a given seed structure over time
and capture its deformation during integration in the flow field.
To accurately compute streaklines and timelines, additional
refinement procedures are required (i.e., inserting and inte-
grating new seed points) to reproduce their geometry over
longer integration intervals. In the literature, it has been shown
that prominent Lagrangian features, can be extracted using
pathlines [29], streaklines [30], and timelines [31]. In addition,
time-dependent trajectories can be reformulated as streamlines
in a higher-dimensional domain. The optimal choice of the
field type typically depends on the characteristics of the flow

field, computational overhead, and analysis goals at hand.
For applications using optical flow fields, specifically video
surveillance, the most prominent line types are pathlines [12],
[18] and streaklines [16].

A. Formal Description of Lagrangian Fields

The Lagrangian measure used in this work is based on the
notion of pathlines because in application to video analytics
pathline are most related to object trajectories (e.g., as result of
an object tracking). In contrast to streaklines, pathlines ideally
remain on the objects during integration, while streakline seed
points are fixed to an static location in the scene. Since we
expect dynamic camera setups (relative motion in the frame
of reference) we focus on the concept of pathlines, since
they directly reflect the observed motion, use less samples,
and do not require additional refinement schemes. However,
our concept can be adopted for all above-mentioned line
types. Note that the underlying optical flow methodology
strongly influences of the accuracy and performance of those
integration-based approaches [18].

Formally, pathlines can be computed as follows: Given a
vector field v(x, t) defined on D ∈ Rn we can start a pathline
that denotes a single trajectory. This can be formulated as an
autonomous system:

d

dt

[
x
t

]
=

[
v(x(t), t)

1

]
,

[
x
t

]
(0) =

[
x0

t0

]
, (1)

for a space-time point [x0, t0], with x ∈ Rn. This standard
domain lifting technique allows to obtain two-dimensional
pathlines in terms of three-dimensional streamlines in the
space-time domain by interpreting time as additional dimen-
sion. In general, the concepts of the Lagrangian theory holds
for any dimension n ∈ N.

In this work we treat a series of optical flow fields as time-
dependent vector fields and maintaining the notation for the
time dependent vector field v(x, t) ∈ R2 and the position
x ∈ R2. A trajectory x(t : t0,x0) of a particle in that space
depends on the initial position x0 and the initial time t0 and
can be estimated by the integration of Eq. 1 over t. Note,
referring to Eq. 1 the pathline evolution is always forward in
time.

One core aspect of Lagrangian methods is the computation
of the flow map φτt0(x) = φ(x, t0, τ), with φτt0(x) ∈ R3

which defines the mapping of all points at time t0 to their
corresponding positions after an integration time τ :

φτt0 : D → D : x0 7→ φτt0(x0) = x(t : t0,x0) (2)

The flow map φτt0 is constructed by integrating pathlines in
a series of optical flow fields v(x, t) following Eq. 1 over τ .
Since the optical flow fields are discrete in space and time,
trilinear interpolation is applied to estimate v(x(t), t).

Note that τ directly controls the size of the temporal
interval (or temporal scale) and the complexity of the resulting
mapping function. One of the most prominent Lagrangian
fields used in this context is the finite-time Lyapunov exponent
(FTLE) which is derived from the spatial gradient of the
flow map and measures the amount of separation over a
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a) frame b) optical flow field c) direction field (τ = 4) d) direction field (τ = 8)

Fig. 2. Optical flow and direction Lagrangian measures for different temporal scales applied to a fighting (top) and dancing crowd (bottom) sequence.
Increasing τ allows to describe motion features on different temporal scales. While short-term events such as boxing are present in short-term integrated fields
(τ = 4), long-term events such as the dancing person are present in integration over larger scales (τ = 8).

limited time interval (see overview in [29]). FTLE is often
used to approximate features such as Lagrangian coherent
structures (LCS) [32] and has been successfully applied in
video analytics applications [16], [18]. As outlined before,
in CCTV applications low resolutions and encoding artifacts
are common, while it has been shown that FTLE fields are
especially sensitive to such effects (c.f. [18]). Considering
these specific challenges, we propose the use of an simpler,
but more robust Lagrangian measure that directly encodes
areas of coherent motion direction and magnitude over time
(section III-C).

B. Properties of Lagrangian Fields

In comparison to local and time-independent feature de-
scriptors, Lagrangian measures offer several distinct advan-
tages: Lagrangian measures map information about the long-
term dynamic motion behavior to a single frame. The resulting
field compactly represents several aspects of the temporal
evolution, while Lagrangian measures can be adopted towards
specific analysis scenarios [12]. The parameters used for
integration (spatial density of seed points, integration time τ )
can be chosen independently of the underlying image sequence
to capture dynamic features on varying spatial and temporal
scales. Finally, the resulting fields spatially correspond to
features in the underlying video sequence (e.g. boundary
silhouettes [18]) and can be processed using standard image
processing techniques. Any features extracted in this frame
(e.g. regions of similar values) naturally translate into groups
of pathline segments that are consistently defined for the
corresponding subsequent frames. Recent research highlights
strong relations between Lagrangian advection measures in the
vicinity of LCS (e.g., see [33]–[35]). One specific property of
gradient-based measures, such as FTLE, is Galilean invariance,
which guarantees independence against global translations
of the frame of reference. In optical flow applications, this
implies that (if boundary effects and projective distortion are

ignored) the FTLE field for a scene with camera motion is
identical to the same scene observed by a static camera.

C. Lagrangian Fields for Optical Flow Analysis

Classic Lagrangian approaches (such as FTLE) use the flow
map to derive the Cauchy-Green deformation tensor and its
eigenvalues to quantify separation and stretching across neigh-
boring pathlines [29]. In contrast to high-resolution simulation
data, approximated optical flow fields contain a significantly
higher amount of artificial discontinuities (due to noise, ap-
proximation errors, projective distortion, and occlusion). In
our previous works [17], [18] we have shown that separation-
based and fused measures are able to obtain robust results, but
also introduce inaccuracies due to those artifacts. To reduce
the influence of those effects, we focus our evaluation on
metrics that do not require flow map gradient information, but
emphasize characteristics that are specifically discriminative
for (violent) motion detection and classification.

As a result of our previous experiments [12], we opted for
a simple measure that: i) is less prone to motion estimation
errors ii) provides direction and velocity information over a
given time span and thus allows to distinguish objects by
their motion. We found the Lagrangian direction field to
fulfill these requirements and to offer a good tradeoff between
discriminative efficiency and computational simplicity. The
direction field ΛX/Y (x, t0) = [ΛX(x, t0) ΛY (x, t0)]T , with
ΛX ,ΛY ∈ R1 can be obtained by estimating the integral
motion of the vectors along the path line as follows:

ΛX(x, t0) =
1

τ

∫
u(φ(x, t0, τ))∂τ

ΛY (x, t0) =
1

τ

∫
v(φ(x, t0, τ))∂τ (3)

where u and v are the vertical and horizontal motion compo-
nents of the optical flow field v(x, t) = [u(x, t) v(x, t)]T

at time t. As with all Lagrangian measures, t0 marks the
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corresponding starting frame, while τ defines the complexity
and temporal range of the resulting field. Since the optical
flow field is discrete in time and space, trilinear interpolation
and a lower-order integration scheme (i.e., RK2) is used to
obtain values in the subpixel domain. The direction field is
the mean motion direction and velocity information estimated
for a temporal range τ of the trajectories starting from each
point in the image at time t0. In general, the starting points
[x0, t0] are independent of the original video resolution, i.e.
the discrete sequence of optical flow fields can be sub- or
oversampled, thus leading e.g. to a motion description with
an implicit super-resolution. If τ = 1 and the direction field
is estimated with the original resolution, the direction field is
the optical flow field of time t0. For τ > 1, the integration
is continued over the next frames according to Eq. 3. Note
that compared to FTLE this measure is not Galilean invariant,
i.e. translating the frame of reference of the optical flow
fields (e.g., due to camera motion) will influence the resulting
direction fields.

Figure 2 shows an example of the direction Lagrangian
measures for four and eight frames. For visualization, we
transform the resulting flow map direction values into the
HSV color space and project the resulting color back to the
original starting frame (in analogy to common local optical
flow depictions). The resulting hue value (H) represents the
direction (or angle) of the flow map displacement, while the
saturation (S) indicates the magnitude of the displacement, and
V is kept constant. The direction fields estimated for different
values of τ capture events of different time durations in a
video. A punch, as shown in the top row, is a short-time event
and best visible at short integration times. The chearleader
dancing shown in the second row is captured best at longer
time scales because its motion is much slower than the punch
and can be perceived for a longer time. Figure 2 shows that
the direction measure allows to distinguish motion patterns on
different temporal scales in a video sequence.

IV. POINT DETECTION AND FEATURE DESCRIPTION

For the task of automated detection of violence in videos,
representations using local features have been established.
Comparative studies [8], [10] show that in this task the
MoSIFT algorithm outperforms common local features such
as HoG, HoF and STIP. The MoSIFT descriptor combines
the histogram of oriented gradients appearance model from
the SIFT descriptor and the histogram of flow motion model
obtained by two-frame optical flow fields. We propose a
Lagrangian-based local feature based on the Lagrangian di-
rection field. This field has the same structure and a similar
interpretation as the optical flow. Thus it can be integrated
into the MoSIFT structure by substituting the optical flow field
by the Lagrangian measure. The proposed Lagrangian Scale
Invariant Feature Transform (LaSIFT) is related to the MoSIFT
but differs in the following aspects:

Motion estimation proposed by Chen et al. [24] applies the
pyramidal Lucas-Kanade (PLK) [36] method on each level of
the scale-space image pyramids to estimate an optical flow
field for each scale. Since the optical flow computation can

a) without global motion compensation

b) using global motion compensation

Fig. 3. Comparison between interest point detections and the direction field
when applying global motion compensation.

be a bottleneck, we propose to estimate the optical flow
and direction Lagrangian fields at original resolution and
build the corresponding scale-space pyramid from these fields.
This increases the speed of the scale-space motion estimation
significantly. In our experiments, we were able to confirm
the findings from common benchmarks (e.g. [37]) that the
DualTVL1 method [38] is a both more accurate and faster
optical flow method than PLK.

Global motion compensation has been implemented in
order to compensate for camera motion which has a significant
impact to the motion signature of the direction fields. As
proposed in [11], we assume a homography-based background
global motion model that excludes independently moving
objects. The compensated direction field can be found by
subtracting the background direction field from the actual one
by:

Λ̃X/Y (x, t0) =

1

τ

∫
v(φ(x, t0, τ))∂τ︸ ︷︷ ︸

ΛX/Y

− 1

τ

∫
vGM (φ(x, t0, τ))∂τ︸ ︷︷ ︸

ΛGM
X/Y

(4)

where Λ̃X/Y denotes the global motion compensated direction
field, with ΛGMX/Y the direction field of the background and
vGM the background optical flow. This field of the background
is given by particle advection described by the concatenated
homographies that are estimated for the consecutive images for
the time-span τ . Due to the linearity of the pathline integration
and the homography estimation, the background direction field
of a certain position x at time t0 can be directly estimated in
the Lagrangian domain with:

ΛGMX/Y (x, t0) =

 mΛ
0 (t0)·x+mΛ

1 (t0)·y+mΛ
2 (t0)

mΛ
6 (t0)·x+mΛ

7 (t0)·y+1
− x

mΛ
3 (t0)·x+mΛ

4 (t0)·y+mΛ
5 (t0)

mΛ
6 (t0)·x+mΛ

7 (t0)·y+1
− y

 (5)
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Fig. 4. LaSIFT feature extraction and Lagrangian vocabulary estimation. Left images shows the reference frame and the volume rending of the pathlines and
direction field. After the feature detection, appearance descriptors (i.e histogram of oriented gradients, top) and long-term motion descriptors (i.e. histogram of
direction field, bottom) are estimated on the whole dataset. With the total number of descriptors the appearance and long-term motion codebook are generated
separately.

where mΛ are the parameters of an eight-parameter homog-
raphy global model estimated using the robust RANSAC
method [39]. In this step, a regularly subsampled Lagrangian
field provides a set of motion-like vectors and the point
correspondence input. Compared to the current field the
resulting rectified direction field suppresses the background
camera motion and represents the moving foreground objects
better. Thereby the motion compensation is only applied to
the Lagrangian measure estimation and not to the particle
advection itself, thus in contrast to [11] errors caused by the
global motion estimation only affect the Lagrangian measure
temporally but not the motion trajectory estimation, i.e. flow
map estimation, itself.

Note that in general, motion compensation mainly affects
the scaling of the Lagrangian field (including sign changes),
while topological properties, in terms of minimum and maxi-
mum extremal regions, are generally preserved.

Interest Point Detection is based on the SIFT detector. This
algorithm implements a difference-of-Gaussian scale-space
detector which is salient at blob-like structures in multiple
scales. Similar to [24], distinctive interest points with sufficient
motion will be extracted. If a candidate point’s compensated
direction field vector is too small, the feature is considered to
be too similar to camera motion and thus will be removed. This
step allows to extract only features related to human action
even under camera motion. Fig. 3 gives an example of feature
detection with and without global motion compensation.

Feature description contains two parts: i) the SIFT appear-
ance descriptor, which is a grid-based aggregated histogram
of oriented gradients and ii) the long-term motion descriptor,
which is a grid-based aggregated histogram of the direction
field vectors from the same surrounding regions. The region

is split into 4× 4 cells and for each cell a histogram of eight
bins is formed. Therefore for each pixel in the cell the orien-
tation bins are voted with corresponding magnitudes. For the
appearance descriptor the magnitudes, i.e. ||[Ix(x) Iy(x)]T ||
and orientation, i.e. arctan(Iy(x)/Ix(x)) are estimated with
the spatial gradients Ix(x) and Iy(x), and for the long-
term descriptor magnitudes, i.e ||[ΛX(x) ΛY (x)]T || and ori-
entation, i.e. arctan(ΛY (x)/ΛX(x)) are estimated with the
directional fields. Contrary to MoSIFT, we do not concatenate
both descriptors as we want to integrate the dependency of
appearance and motion in a so-called late fusion manner.
Experiments have shown that this strategy outperforms the
early fusion proposed in [24]. In the following paragraph, we
will show how the proposed LaSIFT feature can be used to
describe complex video content and how it is integrated into
a framework for detection of violence in videos.

V. SCALE-SENSITIVE VIDEO REPRESENTATION

In order to efficiently exploit local features for violence de-
tection, many authors proposed using a bag-of-words approach
[4], [8], [22]. In these methods, codebooks are used to quantize
features based on their components and accumulate them into
fixed-dimensional histograms. Codebooks are typically built
from cluster centers obtained from k-means clustering. These
cluster centers can be interpreted as vocabulary and are also
known as visual words. In the proposed framework, we use a
histogram-intersection-based clustering method proposed by
Wu et al. [40] who showed that this method substantially
improves the overall accuracy of the system while the com-
putational complexity remains almost as low as for k-means.
Experimental results in [8] confirm this finding also for the
special case of violence detection in videos.
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Fig. 5. Scale-sensitive video representation. The set of LaSIFT descriptors of a video sequence are partitioned into S− 1 subsets F s with respect to LaSIFT
feature scale. The circular label in the left images visualizes the scale of the detected LaSIFT features. For each subset F s an appearance and a long-term
motion bag-of-word histogram is generated. The final video-level feature is a result of the concatenation of appearance and long-term motion histograms for
each subset F s.

In our method, appearance- and long-term motion-based
descriptors are considered separately. For both modalities
separate codebooks are trained, resulting in a Lagrangian
vocabulary (Figure 4). Training separately reduces the sparsity
in the vocabulary and thus enhances the generalization capac-
ity. This strategy is motivated by properties of the datasets
used for evaluation: The number of feature points over the
whole dataset (typically between 300.000 and 1.000.000) is
rather small in relation to the dimensionality of the LaSIFT
descriptor. If joint descriptors were to be used, the number of
usable codewords would have to be reduced due to sparsity in
the data. Therefore, two codebooks for appearance and long-
term motion information are created using the training data.

An important information provided by many feature point
detectors is the spatial scale information which maps the size
of the extracted feature to the image. In current approaches,
including our previous work [19], this information remains
unused. However, considering the presence of macroscopic as
well as microscopic events in the scene, the spatial scale is a
valuable cue for the characterization of the complex motion
patterns in a video scene. For instance, the rather large motion
signature of a person’s torso should not be confused with
smaller features captured on a hand or foot. Consequently,
we propose a video-level feature which takes the scale of the
LaSIFT feature into consideration. An overview of the scale
sensitive video representation scheme is given in Figure 5.
We partition the LaSIFT features and the corresponding ap-
pearance and long-term motion descriptors by their respective
scale into several subgroups F s with s = 0 . . . S−1 of equally-
sized intervals. The maximal interval bound is defined by the
maximal scale which has been observed in the dataset.

For each LaSIFT descriptor set extracted from the video

and selected for a certain scale interval, two separate bag-
of-words histogram descriptors are estimated containing the
appearance- and long-term motion visual and Lagrangian word
frequencies. The scale-sensitive video-level descriptor is built
by combining the concatenated appearance and long-term
motion histograms of each scale. Consequently, the resulting
scale-sensitive video-level descriptor is a 2 × S-dimensional
vector. The final classification is obtained by using a support
vector machine with a nonlinear χ2-kernel [41].

In contrast to [19] no thresholding and channel-based
normalization of the video-level descriptor is required, since
the scale-sensitive descriptor is a higher dimensional vector
and the visual and Lagrangian word frequencies have been
distributed more evenly along the scales. As an optional
adjustment we added an offset ε = 1 to the scale-sensitive
descriptor, which improves the overall stability of the support
vector estimation, since the descriptor may contain a large
number of zeros.

VI. EXPERIMENTS

We evaluated our approach on three common benchmarks
created for violent video detection (Hockey Fight, Violence
in Movies and Violent Crowd) and performed tests on a
proprietary real-world dataset (London Riots 2011), a subset
of video footage captured at the London Riots in 2011. The
latter dataset is used to demonstrate the performance of the
system for an actual use-case. A particular focus will be on
the Violent Crowd and London Riots 2011 dataset. In contrast
to the Hockey Fight and Violence in Movies datasets, which
contain only close-ups of person-on-person fights, Violent
Crowd and London Riots 2011 contain crowded indoor and
outdoor scenes and thus are a more realistic benchmark for
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video-surveillance scenarios. Figure 6 gives a brief overview
of typical ’violent’ and ’non-violent’ events in the datasets
used whereby each dataset reflects different conditions in terms
of number of people involved, camera motion, location and
view-point. Note that the information about ’violence’ or ’non-
violence’ is implicitly contained in the the datasets by the
baseline classification of the underlying training datasets. Our
system does not represent actual context-dependent violence
against humans or groups of humans, but rather classifies
human-action and background motion signatures that discrim-
inate the predefined training videos.

The Hockey Fight dataset has been presented by Nievas
et al. [8]. The footage contains 1000 short video clips from
hockey games of the National Hockey League. Each video clip
is about 50 frames long and has a resolution of 360 × 288.
The clips contain a number of person-on-person fights mostly
captured from a close distance. The dataset has several diffi-
culties: different point of views, camera motion and a unknown
number of involved actors. Especially, the motion blur around
the very fast moving arms and legs is challenging for the
optical flow-based motion estimation.

The Violence in Movies dataset has been introduced by
Nievas et al. [8], too. In 200 short video clips 100 person-on-
person fights are shown. The collection contains 100 non-fight
scenarios containing various sport events and samples from the
Weizmann dataset for action recognition [42]. Each sequence
contains about 50 frames and has a resolution of 720 × 480
except some sequences have a resolution of 720× 576. Com-
pared to the Hockey Fight dataset, this dataset has a higher
variety of the scenes and suffers from the interlacing artifacts.
However, the detection of violent and non-violent videos is
simplified because the fight scenes have similar structure and
backgrounds differ a lot from non-violent scenes.

The Violent Crowd dataset has been published by Hassner
et al. [9]. It comprises a collection of YouTube videos and
includes 246 short video sequences which have been captured
in a variety of arenas (as opposed to the Hockey Fight and
Violence in Movies datasets). The scenarios in this dataset
are manifold and include, for instance, football stadia, bars,
and demonstrations. Both indoor and open areas are covered
using static and non-static cameras. The image resolution of
this dataset is 320× 240 and the video length is varying from
around 50 to 150 frames. Major difficulties on this dataset arise
due to the image quality which is affected by compression
artifacts, motion blur, text overlay, flash lights, and varying
temporal resolutions. All these factors make the extraction of
accurate motion information very challenging.

The London Riots 2011 is a non-public dataset which
has been composed in order to assess our system’s accuracy
using real-world data. The videos have been captured by the
London Metropolitan Police during the disturbances across
England in 2011 and show lootings, violent rallies, vandalism,
and other violent scenes by a variety of actors. Videos used
from this dataset typically have a resolution of 704 × 625
and show footage from non-static CCTV cameras with both
overviews and heavy zoom-ins. Overall image quality is poor:
low contrast, reflections, and motion blur are frequent. Videos
show scenarios with both crowds and single actors and have

been annotated manually. The footage has been divided into
50 videos containing violence and 50 videos capturing normal
activities.

To assess the performance of our system we use the 5-
fold cross validation as proposed by Hassner et al. [9]. For
each of the five runs, the training set is used to generate the
codebooks with 500 words. We chose this number in order
to be comparable with [8]–[10]. The Lagrangian fields are
estimated based on the Dual TV-L1 optical flow [38].

In our experiments, we evaluated the influence of the inte-
gration time τ and the spatial scale-sensitivity S. Performance
comparison is done in terms of accuracy and area-under-
curve of receiver-operating-characteristic (ROC-AUC). These
measures are commonly used in the literature, but are not
equivalent. The results indicate that, depending on the measure
chosen, the optimal system configuration can be different. We
report both measures in order to provide comparison with other
state-of-the-art methods.

The classification metrics for different τ and S for the
Hockey Fight, Violent Crowd, Violence in Movies and London
Riots 2011 datasets are shown in Fig. 7. It can be seen that
both parameters have a significant influence on the accuracy
and ROC-AUC measure. Except for the Riot dataset, the
performance decreases if τ is chosen too small or too large.
The effect is with a minimal standard deviation for accuracy of
2.1% most significant on the Violent Crowd dataset and with
0.41% least significant on the Violence in Movies dataset. This
supports the assumption that there is an optimal integration
time related to the violent events occurring in the datasets.

Similar observations can be found for the changes in S
expect for the Violence in Movies data. It can be further
concluded that there is an optimal partition of the local feature
related to a specific motion structure size. Both findings
quantify appropriate spatio-temporal scales of characteristic
motion signatures for the considered scenarios.

We further compare the performance our system with recent
state-of-the-art methods by selecting the configuration with
the optimal accuracy values. The numerical results are shown
in the related Tables I, II, III, IV. Apart from MoSIFT
which denotes the baseline, HOT [26] and the well-established
Dense Trajectories [11] based on long-term motion infor-
mation are considered for comparison. Furthermore, a two-
stream CNN proposed by Feichtenhofer et al. [43] has been
adjusted to perform violence detection for comparison. The
modified two-stream CNN has been initialized with temporal
and spatial VGG-16 networks provided by Feichtenhofer, pre-
trained with UCF101 action classification dataset and refined
on the violence dataset. In addition, Substantial Derivatives
[27] and Interaction Force [16], which are both based on fluid
dynamical concepts, will be of special interest as they are most
related to the proposed Lagrangian approach.

The entry ’SIFT’ in the tables denotes the performance of
our system, i.e. with scale-sensitive coding and motion-based
feature selection, when using only appearance description and
Λ̃X/Y will denote the performance of our system when using
only long-term motion description. This allows to distinguish
the influence of the scale-sensitive classification framework
proposed in Section V and the Lagrangian descriptor pro-
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a) Hockey Fight b) Violent Crowd c) Violence in Movies d) London Riots 2011

Fig. 6. Sample frames from video sequences of violent (top) and non-violent (bottom) content for each of the datasets considered in our study. Due to privacy
regulations, real-world content from London riots has been anonymized before publishing.

=

S

90

91

92

1

A
cc

ur
ac

y 
in

 % 93

2

94

3
4 7

55 46 3
8 2

1

=

S

82

84

86

1

88

A
cc

ur
ac

y 
in

 % 90

2

92

3
4 7

55 46 3
8 2

1

=

S

90

91

92

1

93

A
cc

ur
ac

y 
in

 %

2

94

3
4 7

55 46 3
8 2

1

=

S

60

65

70

1

A
cc

ur
ac

y 
in

 %

75

2

80

3
4 7

55 46 3
8 2

1

=

S

0.94

0.95

1

0.96

R
O

C
-A

U
C

2

0.97

3
4 7

55 46 3
8 2

1

=

S

0.9

0.92

1

0.94

R
O

C
-A

U
C

2

0.96

3
4 7

55 46 3
8 2

1

=

S

0.97

1

0.98

R
O

C
-A

U
C

2

0.99

3
4 7

55 46 3
8 2

1

=

S

0.7

0.75

1

0.8

R
O

C
-A

U
C

2

0.85

3
4 7

55 46 3
8 2

1

a) Hockey Fight b) Violent Crowd c) Violence in Movies d) London Riots 2011

Fig. 7. Violence detection performed with LaSIFT configurations varying the integration times τ and the number of applied scale intervals S. Comparison of
the mean accuracy and the area under the ROC curve (AUC) with 5-fold cross validation on Hockey Fight, Crowd Violence, Violence in Movies and London
Riots 2011 dataset.

posed in Section IV. In addition, for the Hockey Fight and
Violent Crowds datasets we provide numerical results of our
baseline work proposed in [19] denoted with LaSIFT∝(mix)
and LaSIFT∝, where (mix) denoted the combination of video-
level descriptors from different integration intervals. This com-
parison underlines the advantage of the novel scale-sensitive
video representation proposed in Section V leading to further
performance improvements of the LaSIFT violent video clas-
sification. For the Violent Crowds dataset the proposed video-
level description based on early fusion (LaSIFTearly) has been
compared. This experiment demonstrates the superior perfor-
mance of the late fusion applied in the remaining experiments.

Comparing the numerical results of the Hockey Fight and

Violence in Movies benchmarks (see Table I and II) shows that
our SIFT implementation outperforms most well-established
features such as MoSIFT [24] or VIF [9]. This indicates that
for person-on-person actions the global motion compensation,
which inhibits placement of feature points in the background,
significantly improves the performance of the classification.
The accuracy was then further improved by integrating the
Lagrangian motion model. Consequently, the proposed method
sets the state-of-the-art for the Hockey Fight benchmark.

Table III shows a state-of-the-art comparison for the Vio-
lent Crowd dataset. This dataset reflects best the challenges
of modern violence classification systems processing CCTV
data. For this dataset, an accuracy improvement of around
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TABLE I
COMPARISON OF VIOLENCE DETECTION PERFORMANCE ON HOCKEY

FIGHT DATASET BETWEEN LASIFT AND STATE-OF-THE-ART METHODS.
SIFT DENOTES AN EVALUATION OF THE PROPOSED SYSTEM, I.E. WITH

THE PROPOSED FEATURE ENCODING SCHEME, BUT BASED ON
APPEARANCE MODEL AND Λ̃X/Y ON THE LAGRANGIAN MODEL ONLY.

Method ACC ± SD ROC-AUC
STIP(HoG) + BoW [8], [9] 91.7 -
STIP(HoF) + BoW [8], [9] 88.6 -
MoSIFT + BoW [10] 90.9 -
MoSIFT + KDE + SC [10] 94.0±1.97% 0.9666
LaSIFT∝(τ = 4) 92.42±2.57% 0.9682
LaSIFT∝(mix) 93.32±2.24% 0.9732
SIFT + BoW(S = 3) 91.51±4.83% 0.9563
Λ̃X/Y (τ = 4) + BoW(S = 3) 81.54±10.03% 0.8996
LaSIFT(τ = 4) + BoW(S = 3) 94.42±2.82% 0.9699

TABLE II
COMPARISON OF VIOLENCE DETECTION PERFORMANCE ON VIOLENCE IN
MOVIES DATASET BETWEEN LASIFT AND STATE-OF-THE-ART METHODS
(#RESULTS ARE TAKEN FROM [27]).SIFT DENOTES AN EVALUATION OF
THE PROPOSED SYSTEM, I.E. WITH THE PROPOSED FEATURE ENCODING

SCHEME, BUT BASED ON APPEARANCE MODEL AND Λ̃X/Y ON THE
LAGRANGIAN MODEL ONLY.

Method ACC ± SD ROC-AUC
Jerk# [3] 95.02±0.56% -
STIP (HoG) + BoW [8] 44.5% -
STIP (HoF) + BoW [8] 50.5% -
MoSIFT + BoW [8] 89.5% -
VIF# [9] 91.31±1.06% -
Interaction Force# [16] 95.51±0.79% -
FL|FCv [27] 96.89±0.21% -
VIPS [25] 96.91% -
SIFT(S = 2) + BoW 93.33±6.99% 0.9807
Λ̃X/Y (τ = 2) + BoW(S = 5) 93.40±4.90% 0.986
LaSIFT(τ = 2) + BoW(S = 5) 94.95±4.57% 0.9830

20% has been obtained. The classification result significantly
benefits from the integration of the Lagrangian descriptors.
The application of the long-term motion descriptor Λ̃X/Y
achieves competitive results to most of the state-of-the-art
methods. For the Violent Crowd dataset the combination of
the appearance and long-term motion descriptor results into
the highest performance gain and outperforms comparative
long-term motion based methods such as HOT and Dense
Trajectories. Whereas FL|FCv [27] with a difference of 1.94%
slightly outperforms our approach at the Violence in Movies
dataset, our approach achieves an about 7.69% better accuracy
on the Violent Crowd dataset. Despite the accuracy being
reduced on the high quality Violence in Movies data, this
shows that the Lagrangian-based video-level representation
is more robust on video footage with low visual quality
data and also robust to the application of a larger variety
of scenarios. Especially the optical flow estimation suffers
from the low video quality, bad contrast and lots of block-
like coding artifacts contained in the Violent Crowd data but
this effect is alleviated for direction fields because the flow
map integration contains an implicit denoising.

Finally, the numerical results for London Riots 2011 dataset
(non-public) are given in Table IV. The LaSIFT classification
framework has been compared against the scale-sensitive
video-level descriptor with the single appearance (SIFT)

TABLE III
COMPARISON OF VIOLENCE DETECTION PERFORMANCE ON VIOLENT

CROWD DATASET BETWEEN LASIFT AND STATE-OF-THE-ART METHODS
(#RESULTS ARE TAKEN FROM [27]).SIFT DENOTES AN EVALUATION OF
THE PROPOSED SYSTEM, I.E. WITH THE PROPOSED FEATURE ENCODING

SCHEME, BUT BASED ON APPEARANCE MODEL AND Λ̃X/Y ON THE
LAGRANGIAN MODEL ONLY.

Method ACC ± SD ROC-AUC
Jerk# [3] 74.18±0.85% -
LTP [9] 71.53±0.17% 0.7986
VIF [9] 81.30±0.21% 0.8500
HoG + BoW [8], [9] 57.43±0.37% 0.6182
HoF + BoW [8], [9] 58.53±0.32% 0.5760
MoSIFT + BoW [10] 83.42±8.03% 0.8751
MoSIFT + KDE + SC [10] 89.05±3.26% 0.9357
MLV [28] 84.44% 0.8800
Dense Trajectories# [11] 79.38±0.14% -
Interaction Force# [16] 74.50±0.65% -
HOT [26] 82.30% -
FL|FCv [27] 85.43±0.21% -
VIPS [25] 86.61% -
Two-Stream CNN (VGG-16) [43] 91.83±3.34 -
LaSIFT∝(τ = 3) 92.01±8.01% 0.9741
LaSIFT∝(mix) 92.01±8.01% 0.9729
LaSIFTearly(τ = 3) + BoW(S = 5) 87.82±8.70% 0.9306
SIFT + BoW(S = 5) 73.13±4.39% 0.8521
Λ̃X/Y (τ = 3) + BoW(S = 5) 81.37±5.13% 0.8948
LaSIFT(τ = 3) + BoW(S = 5) 93.12±8.77% 0.9731

TABLE IV
COMPARISON OF VIOLENCE DETECTION PERFORMANCE ON LONDON

RIOT 2011 DATASET BETWEEN LASIFT AND MOSIFT.SIFT DENOTES AN
EVALUATION OF THE PROPOSED SYSTEM, I.E. WITH THE PROPOSED

FEATURE ENCODING SCHEME, BUT BASED ON APPEARANCE MODEL AND
Λ̃X/Y ON THE LAGRANGIAN MODEL ONLY.

Method ACC ± SD ROC-AUC
MoSIFT + BoW 72.38± 11.86 0.790
SIFT + BoW(S = 4) 78.00± 8.24 0.810
Λ̃X/Y (τ = 4) + BoW(S = 4) 74.00±9.62% 0.785
LaSIFT(τ = 4) + BoW(S = 4) 84.00± 7.42 0.874

and Lagrangian model (Λ̃X/Y ), and the MoSIFT feature
with the baseline bag-of-word video-level representation. The
Lagrangian approach outperforms significantly the baseline
MoSIFT. Our proposed system using τ = 4 and S = 4
achieves both high accuracy and ROC values. For the London
Riots 2011 with a resolution of 704×625 the proposed system
operates with 0.62 fps on a Intel i7 with 3.4 GHz.

Figure 8 shows exemplary failure cases of the proposed
systems. The causes for misclassification can be manifold, e.g
in Fig. 8(a) the boxing event only takes place in the last frames
of the sequence, Fig. 8(b) is affected by very strong motion
blur. Fig. 8(c,d) shows rare movements such as a runner’s arm
movements or the bending down of a person which can have
similar motion characteristics as violence, e.g. boxing, and are
thus difficult to discriminate.

In summary, the experiments have shown that with the
proposed LaSIFT descriptor the complementary appearance
and long-term motion information have been successfully
combined. This indicates the importance of long-term motion
cues in this data where the discrimination power of the
appearance model is low due the low contrast or visual quality
of real-world video footage as in the London Riots 2011 or
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Fig. 8. Samples frames of misclassified video sequences.

Violent Crowd datasets. The good performance for each of
the datasets underlines that our system is capable of dealing
with a variety of scenarios including real-world footage from
police sources.

VII. CONCLUSION

In this paper we presented a novel approach for violence
detection in videos which is based on Lagrangian mea-
sures. Lagrangian measures, as a tool from Lagrangian theory
describing non-linear dynamic systems, have been revised
and adopted for video analytics. Dynamic characteristics of
moving objects in video footage can efficiently be described
using a direction-based Lagrangian field measure that offers
a appropriate trade-off between discriminative efficiency and
computational complexity. The proposed measure comprises
salient motion information over multiple time scales τ and rep-
resents a more robust alternative to gradient-based measures,
such as FTLE, in low-quality CCTV scenarios. In order to
develop a feature for violence analysis in videos, we integrated
this concept into the LaSIFT method which includes both
appearance information and long-term motion cues. We further
proposed a framework for violence detection based on a bag-
of-words approach including a scale-sensitive feature encoding
scheme and a late-fusion approach.

The proposed framework has been extensively tested on
various challenging datasets and on non-public, real-world
data obtained by the London Metropolitan Police. Our method
shows good accuracy and improves upon multiple state-of-the-
art algorithms. As violence detection can be see as a subclass
of context-based video classification and action recognition, in
the future we want to extend the application of our approach
to these more general fields and show its suitability for other
areas in computer vision.
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[1] M. Sjöberg, B. Ionescu, J. Yu-Gang, V. L. Quang, M. Schedl, and C.-H.
Demarty, “The MediaEval 2014 Affect Task: Violent Scenes Detection,”
in Working Notes Proceedings of the MediaEval 2014 Workshop, 2014.

[2] E. Acar, F. Hopfgartner, and S. Albayrak, “Violence detection in
hollywood movies by the fusion of visual and mid-level audio cues,”
in International Conference on Multimedia, 2013, pp. 717–720.

[3] A. Datta, M. Shah, and N. D. V. Lobo, “Person-on-person violence
detection in video data,” in International Conference on Pattern Recog-
nition, vol. 1, 2002, pp. 433–438.

[4] L.-H. Chen, H.-W. Hsu, L.-Y. Wang, and C.-W. Su, “Violence detection
in movies,” in International Conference on Computer Graphics, Imaging
and Visualization, Aug 2011, pp. 119–124.

[5] B. Krausz and C. Bauckhage, “Automatic detection of dangerous motion
behavior in human crowds,” in International Conference on Advanced
Video and Signal Based Surveillance, 2011, pp. 224–229.

[6] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in European Conference on Com-
puter Vision, 2006, pp. 428–441.

[7] O. Déniz, I. Serrano, G. Bueno, and T.-K. Kim, “Fast Violence Detection
in Video,” in International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, 2014, pp.
478–485.

[8] E. B. Nievas, O. D. Suarez, G. B. Garcı́a, and R. Sukthankar, “Violence
detection in video using computer vision techniques,” Computer Analysis
of Images and Patterns, pp. 332–339, 2011.

[9] T. Hassner, Y. Itcher, and O. Kliper-Gross, “Violent flows: Real-time
detection of violent crowd behavior,” Conference on Computer Vision
and Pattern Recognition Workshops, pp. 1–6, 2012.

[10] L. Xu, C. Gong, J. Yang, Q. Wu, and L. Yao, “Violent video detection
based on MoSIFT feature and sparse coding,” in International Confer-
ence on Acoustics, Speech and Signal Processing, 2014, pp. 3562–3566.

[11] H. Wang and C. Schmid, “Action Recognition with Improved Trajecto-
ries,” in International Conference on Computer Vision, 2013, pp. 3551–
3558.

[12] A. Kuhn, T. Senst, I. Keller, T. Sikora, and H. Theisel, “A lagrangian
framework for video analytics,” in Workshop on Multimedia Signal
Processing, 2012, pp. 387–392.

[13] B. E. Moore, S. Ali, R. Mehran, and M. Shah, “Visual crowd surveillance
through a hydrodynamics lens,” Communications of the ACM, vol. 54,
pp. 64–73, 2011.

[14] T. Li, H. Chang, M. Wang, B. Ni, and R. Hong, “Crowded Scene
Analysis : A Survey,” Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 3, pp. 367–386, 2015.

[15] S. Ali and M. Shah, “A Lagrangian Particle Dynamics Approach for
Crowd Flow Segmentation and Stability Analysis,” in International
Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–6.

[16] R. Mehran, B. E. Moore, and M. Shah, “A streakline representation of
flow in crowded scenes,” in European Conference on Computer Vision,
vol. 6313, 2010, pp. 439–452.

[17] E. Acar, T. Senst, A. Kuhn, I. Keller, H. Theisel, S. Albayrak, and
T. Sikora, “Human action recognition using lagrangian descriptors,” in
International Workshop on Multimedia Signal Processing, 2012, pp.
360–365.

[18] T. Senst, A. Kuhn, H. Theisel, and T. Sikora, “Detecting people carrying
objects utilizing lagrangian dynamics,” in International Conference on
Advanced Video and Signal-Based Surveillance, 2012, pp. 398–403.

[19] T. Senst, V. Eiselein, and T. Sikora, “A Local Feature based on
Lagrangian Measures for Violent Video Classification,” in International
Conference on Imaging for Crime Prevention and Detection, 2015, pp.
1–6.

[20] I. Laptev, “On space-time interest points,” International Journal of
Computer Vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[21] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in Computer Vision and Pattern Recognition, 2005, pp. 886–
893.
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