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Abstract

Compression algorithms that employ Mixtures-of-Experts depart drastically from standard
hybrid block-based transform domain approaches as in JPEG and MPEG coders. In pre-
vious works we introduced the concept of Steered Mixtures-of-Experts (SMoEs) to arrive at
sparse representations of signals. SMoEs are gating networks trained in a machine learn-
ing approach that allow individual experts to explain and harvest directional long-range
correlation in the N-dimensional signal space. Previous results showed excellent potential
for compression of images and videos but the reconstruction quality was mainly limited to
low and medium image quality. In this paper we provide evidence that SMoEs can com-
pete with JPEG2000 at mid- and high-range bit-rates. To this end we introduce a SMoE
approach for compression of color images with specialized gates and steering experts. A
novel machine learning approach is introduced that optimizes RD-performance of quantized
SMoEs towards SSIM using fake quantization. We drastically improve our previous results
and outperform JPEG by up to 42%.

1 Introduction

In recent years a lot of effort has been made to investigate the potential of the
novel and well-defined Steered Mixture-of-Experts (SMoE) framework for coding im-
age [1, 2], video [3] and even higher dimensional image modalities such as light field
[4] and light field video [5]. This compression approach drastically departs from con-
ventional block-based frequency domain transform coding techniques, such as JPEG
and JPEG2000, as SMoE models explain the data in the spatial rather than in the
transform domain. As a derivative of the so-called Mixture-of-Experts (MoE) ap-
proach it follows the divide-and-conquer principle [6]. Each expert acts as a regressor
weighted by a gating function. This arrives at a soft partitioning of the input space to
determine in which regions the experts are trustworthy. The set of arbitrarily-shaped
gating functions are modeled by a mixture of steered Gaussian kernels indicating the
spatial relevance of the respective expert. In general experts and gates can extend over
the entire image plane and thus harvest long-range correlation. In some instances very
simple single experts can be responsible for the reconstruction of arbitrarily-shaped
regions with thousands of pixels, as we will show in this paper.
In previous works ([1, 3–5]) Gaussian Mixture Models (GMM) were used to jointly
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represent the experts and associated gates trained by the well-known Expectation-
Maximization (EM) algorithm to find the representing model parameters. However,
the EM algorithm is not necessarily optimal for regression tasks as it maximizes the
joint likelihood function of the input and output space rather than minimizing the
Mean Squared Error (MSE). Therefore, an approach minimizing the MSE using Gra-
dient Descent (GD) has been presented in [2] yielding promising results in very low
bit-rate cases. Nevertheless, the recent works have in common that the parameters
are estimated first - either by the EM algorithm or by GD - and then quantized for
coding. Additionally, these approaches still suffer from the problem of initialization
of the parameters, such that the maximum potential of SMoE models is not fully
exploited.
In [7] this problem has been tackled by starting the optimization with a very large
number of components initialized on an evenly distributed grid. Additional objec-
tives are introduced to the loss function to establish a trade-off between the number
of parameters and the regression error to enforce sparsity of the image representation
while achieving high reconstruction qualities.
This work extends the framework presented in [7] in multiple ways: First, an ex-
tension to model color information is made. Instead of minimizing the MSE, this
framework is able to maximize the structural similarity (SSIM) index referencing the
perceived reconstruction quality [8]. This results both visually and quantitatively in
drastically improved results compared to our previous works. Because the reconstruc-
tion quality of the model degrades quickly when performing optimization after mod-
elling, the quantization step is incorporated into the optimization process of the SMoE
model. Evaluations show that our approach outperforms JPEG by up to 42.48% and
is competitive to JPEG2000 in mid-range to high-range bit-rates. Furthermore, our
approach can be easily extended to model and encode video, light field/light field
video, or other types of higher dimensional data using the same modelling and coding
pipeline.

2 Steered Mixture-of-Experts

In our Steered Mixture of Experts (SMoE) framework the underlying prediction func-
tion of an amplitude of a pixel (luminance output) given its position (spatial input)
is formulated as a weighted sum of K experts:

yp(x) =
K∑
k=1

mk(x)wk(x). (1)

The experts in our approach can be (hyper-)planes in the pixel domain or input space
acting as regressors

mk (x) = mT
kx+m0,k (2)

described by mk containing the slopes in each dimension of the pixel domain and an
offset m0,k. The weighting function, also called gating, in Eq. 1 is a weighted soft

2



max function

wk (x) =
πk · K (x;µk,Ak)

K∑
j=1

πj · K
(
x;µj,Aj

) (3)

with mixing coefficients πk. We employ Gaussian kernels

K (x;µ,A) = exp

[
−1

2
(x− µ)TAAT (x− µ)

]
(4)

defined by their center positions µ ∈ Rd and steering parameters

Ak :=

a11,k 0...
. . .

ad1,k . . . add,k

 (5)

as the inverse cholesky decomposition of a covariance matrix where only the lower
triangular part is nonzero and d is the dimension of the input space.
To represent also the chrominance channels, the experts are extended as multidimen-
sional regressors, for each channel a (hyper-)plane is fitted into the corresponding
domain. Thus, having experts with three dimensional output allows Eq. 2 to be
rewritten as

mk (x) = M kx+m0,k (6)

with

M k =
[
mT

Y,k m
T
U,k m

T
V,k

]T
(7)

where mY,k, mU,k, and mV,k contain the slopes in the Y,U and V domains, respec-
tively, and m0,k the offsets for each channel. Consequently, the prediction function
from Eq. 1 has to be reformulated to:

yp(x) =
K∑
k=1

mk(x)wk(x). (8)

Parameter Optimization Similar to the recent work in [7], a multi-task optimiza-
tion technique is used to train the SMoE model. Instead of optimizing the MSE, the
main optimization criterion in this work is to maximize towards the SSIM. The loss
function formulated as a minimization problem is defined as follows:

LSSIM := (1− SSIM(ITarget, IRec)) (9)

where ITarget and IRec are the original and reconstructed images, respectively, using
default parameters as defined in [8]. To ensure a sparse representation of the un-
derlying image while providing image reconstructions of high qualities, an additional
sparsity promoting regularization loss

LS := λS ·
K∑
k=1

πk (10)
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is used as in [7] where its influence can be adjusted by λS. Therefore, the mixing
coefficients πk are gradually decreased until values ≤ 0 are reached, stating that the
corresponding kernel has no influence to the regression function, and thus, it can be
removed from the model. As such, the final loss function is composed as

L := LSSIM + LS. (11)

which needs to be minimized by finding a set of parameters Ak, M k, m0,k, µk and
πk:

arg min
A,M ,m,µ,π

{L} (12)

following the negative gradient −∇L using Gradient Descent.

Parameter Quantization SMoE models define a highly complex dependence be-
tween the model parameters and regression function. Therefore, they are extremely
sensitive towards quantization of parameters regarding the remaining reconstruction
quality. It is crucial to optimize the model with already quantized parameters rather
than to quantize the parameters after training. Therefore, the interaction of the pa-
rameters and the impact of quantization are considered jointly during optimization.
The uniform quantization function is as follows:

v̄ := min(max(v, a), b) (13)

∆ :=
a− b
2n − 1

(14)

v̂ := round

(
v̄ − a

∆

)
·∆ + a (15)

where v̄ is the clipped value of the continuous parameter v within the range [a, b],
∆ is the step size depending on the number of bits n, and v̂ is the resulting quan-
tized parameter. During optimization, v is trained with full precision but the loss is
computed with respect to its quantization v̂.

3 Experiments and Results

In this section we evaluate our coding approach for colored still images and com-
pare the results to commonly used image compression standards, such as JPEG and
JPEG2000. The implementation for optimization is done using the Tensorflow frame-
work based on the recent work in [7].
As the gradients of the parameters to be optimized are of different magnitudes, differ-
ent learning rates are required to exploit the maximum potential of the SMoE model.
The learning rates for the Adam optimizer [9] are 1, 10−4 for A, π, respectively, and
10−3 for µ, m if not stated otherwise. The remaining parameters of the optimizer
are set to the default values β1 = 0.9, β2 = 0.999 and ε = 10−8 for all experiments. In
our experiments we use a so-called Constant Experts - Steered Gates model for sparse
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SMoE representation. As such the parameters M are not trained in any experiment,
remain zero and need not be transmitted. This results in simple zero-order regres-
sors and the more-elaborate steering gates explore directional long-range correlation.
Taking all parameters M into account would increase the number of data drastically,
while at the same time the quality barely improves as the structural information lies
mostly in the gating shown in Fig. 3. Thus, spending too many bits on the expert’s
slopes is avoided for better compression performance.
The image modeling and coding process is divided into four steps: First, the model
is initialized and pre-trained without regularization for sparsification. After conver-
gence, regularization to sparsify the model is employed. Afterwards, fine-tuning to
maximize the reconstruction quality without regularization is performed. Kernels
with respective mixing coefficients reaching πk < 0 during training in all steps are
removed from the model. In the final step, the resulting model is coded using an
entropy arithmetic coding approach.
During all steps of optimization, the quantization of the model parameters is employed
using the Tensorflow’s fake quantization function allowing for gradient computations
and parameter updates with full precision [10]. All parameters are uniformly quan-
tized while the minimum/maximum range of the quantizers for each kind of variable
are also optimized at the same time, with the exception of the mixing coefficients πk.
As the ratios of the mixing coefficients to each other is highly relevant whereas their
absolute values are not, the quantization range is fixed to [0, 2]. Additionally, the
main diagonal entries of A have their own quantization range as they are always > 0,
but the lower triangular entries are arbitrary.

Initialization and Pre-Training The kernels of the model are initialized with µ
distributed on regular grid of k1 × k2 with k1,2 = bResw,h

4
c where Resw,h represents

the number of pixels in the x and y dimension of the corresponding test image,
respectively. All mixing coefficients are set to πk = 1, i.e. to the middle of their
defined range. A is initialized in a way that the distance between the centers of
two kernels equals two standard deviations 2σ. As aforementioned, the slopes of the
experts are not trained and remain zero in all cases, the offsetsm0,k are initialized with
the mean of the respective channel (Y,U,V) of the training image where the gating of
the corresponding kernel has maximum influence. Within the pre-training step the
model is trained for 10k iterations, no sparsify regularization is applied (λS = 0).

Regularization After pre-training, the regularization phase is employed. Best re-
sults are achieved by slowly introducing the regularization term and exponentially
increasing the coefficient λS. Therefore, the following schedule is applied: λS = x2

k1·k2
with x evenly distributed in [0.1, 15] with 50 steps. The fixed number of initial kernels
k1 · k2 is included to account for different sensitivity levels depending on the initial-
ization of the kernels. In this phase the learning rate for π is decreased to 2 · 10−5

to avoid kernels being dropped out too quickly and ensuring neighboring kernels can
assimilate.
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JPEG JPEG2000 SMoE Proposed
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Figure 1: Rate-Distortion curves

Fine-tuning In the last step of optimization, the model is trained for an additional
500 training iterations without sparsify regularization to compensate for the prior
trade-off between the SSIM LSSIM and the regularization loss LS to fine-tune the
model towards a maximum SSIM value. Vanilla Gradient Descent is used with same
learning rates as in the step before.

Arithmetic Coding Finally, the coding step is employed to transform the quan-
tized parameters into a bit stream. An arithmetic coding approach is used to bring
the bit-rate into line with the underlying entropy of the parameters. Each parameter
is coded under the assumption that it is independent identically distributed by fit-
ting a continuous distribution to the relative frequency of symbol occurrences. Three
probability density functions (pdf) are fitted by likelihood: Normal, Laplacian, and
Maxwell. For each, an estimation of the model parameters describing the underlying
pdf is determined on the signal. Finally, the best fitting pdf is chosen by MSE com-
parison. In the final bit stream an index of the chosen pdf, the model parameters,
and a binary arithmetic coded version of the zero-one binary stream are transmitted
right before the arithmetic coded parameter data.
In general, each kind of parameter can be fitted to one of the three aforementioned
density functions quite well except the center µ as they are distributed over the en-
tire image and consequently each symbol occurs only once. Therefore, we only train
and code the different center position regarding their start positions as we initial-
ize the center position on an evenly distributed grid, which is known at the decoder
side. Hence, an additional bit stream only containing flags for signaling which kernels
are still active is needed to reconstruct the center assignments as some kernels are
removed due to the sparsification promoting regularization.

Results The whole compression process including modeling and coding has been
tested on 512× 512 pixel seized color images. These images have been filtered by the
Block-matching and 3D filtering (BM3D) algorithm [11] to reduce the noise corrup-
tion before optimization. Noise removal is a common technique to save bits in image
and video compression [12–14]. In our SMoE framework we have not incorporated yet
sophisticated experts to model noise-like signals. Because the loss function is mainly
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Original (denoised) JPEG JPEG2000 Proposed

Figure 2: Visual Comparison at approx. same bit-rates for Lena (∼0.6 bpp) and
Barbara (∼1.12 bpp). The depicted results of our proposed method are highlighted
with in the respective curve in Fig. 1. (best viewed in color and zoomed-in)

defined by the SSIM function, the optimization would focus too much on modeling
the local variance of the image due to the underlying noise rather than the structural
elements of the images. The standard deviation parameter of the BM3D algorithm
is set σ = 4.7 for all images.
The parameters A,m,µ,π are quantized with 9, 7, 10 and 4 bits, respectively. As
the luminance channel is the most important regarding the human visual system
compared to the chrominance channels the SSIM function in Eq. 9 is evaluated for
each channel independently and added up with weights Y:U:V ↔ 6:1:1 to give the
luminance channel more relevance within the optimization process. The same weights
are used to determine the SSIM value for validation.

Fig. 1 depicts rate-distortion curves for Lena, Barbara, Peppers, and Baboon. To
make fair comparisons we consider the filtered images as ground truth and use them
also for the JPEG and JPEG2000 reference methods. Without quantization aware
training (quantized after finishing the training) results drastically deteriorate. It can
be seen that our approach outperforms JPEG in terms of SSIM for all test images ex-
cept Baboon. As Baboon contains predominantly very high frequency content, a very
high number of components is necessary to represent it. Surprisingly, at very high
bit-rates our approach is visually comparable to JPEG and JPEG2000. Very promis-
ing results are achieved from mid to high bit-rates for Lena and Peppers - our method
is even competitive to JPEG2000. The results for Barbara are also noteworthy. Al-
though a lot of high frequency structures are included in this image it outperforms
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Figure 3: Gating for Lena (K = 2717) and Barbara (K = 5496), respectively, showing
color coded the area of maximum influence of a respective kernel. A closer look
reveals that fine-grained details are modelled by placing small kernels above larger
ones belonging to the background.

JPEG at any bit-rate. Even more convincing are visual comparisons depicted in Fig.
2 showing results of JPEG, JPEG2000, and our approach, respectively, at approxi-
mately the same bit-rates for Lena and Barbara. JPEG and JPEG2000 suffer from
block and ringing artifacts, especially in areas of edges which can be seen for Lena in
the hat structure and wisp of hair on her shoulder. Our SMoEs approach on the other
hand is not block-based and the experts can steer along edges and represent them
perfectly. It is worth noting how accurately the fine structures are represented in our
method, even though our SMoE experts do not include any kind of advanced texture
models yet. The same artifacts for JPEG and JPEG2000 are visible for Barbara on
her arms. It can be noted that the SSIM value at this bit-rate for Barbara is better
for JPEG2000 than for SMoE. However, our results are more visually appealing. This
indicates that the SSIM metric may not necessarily be an appropriate tool to evaluate
image qualities regarding the human visual perception for such structures.
Fig. 3 illustrates the corresponding gatings of our results for Lena and Barbara shown
in Fig. 2. As expected, the proposed regularization promoting optimization results in
a sparse separation of the image. In textured areas we achieve a dense concentration
of kernels (i.e. in the feather for Lena and table cloth for Barbara) while less kernels in
less structured areas. It is also clear that major information about the topology of the
modeled image is embedded within the gating. As previously pointed out the steered
kernels explore directional correlation properties in the image. While some kernels
cater for small numbers of pixels some kernel spread out over the entire input space
providing global support for thousands of pixels. As an example the green segment
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Figure 4: Examples of resulting gatings of merely three kernels. Their center positions
are identical. Only a single parameter is changed between left and right.

highlighted in Fig. 3 is generated by one kernel and its associated steered gate covers
an area almost from top to bottom of the image, while being overlapped and inter-
rupted in the maximum influence by smaller kernels. Fig. 4 is intended to illustrate
how gates can interact and provide complex steered and overlapping representations.
Here two non-steered kernels and one steered kernel provide three separate gating
functions. In Fig. 4 (left) the yellow gating function is separated by the green steered
gate. Even though separated in the image plane, the yellow gate is, nevertheless,
generated by only one kernel. The same holds for the steered green gate generated by
its single kernel, separated by the red one. In Fig. 4 (right) the gates were generated
from kernels with same parameters used in Fig. 4 (left), except that the bandwidth
of the green kernels is made larger. A complex novel soft-gating pattern with curves
results. It is the ability of SMoEs to model large sparse areas with few kernels that
makes the approach very efficient. On the other hand complex patterns especially at
edges and in textured areas can be reconstructed without edge-boundary artifacts.

4 Conclusion and Future Work

In this paper we proposed a Gradient Descent based optimization approach incor-
porating quantization of the model parameters for efficient coding within the SMoE
framework. By maximizing the SSIM instead of minimizing the MSE the objective
and perceived image quality drastically improves compared to our previous works
as well as compared to JPEG and JPEG2000. The simultaneous consideration of
optimizing and quantizing the model parameters allows for efficient bit allocation.
Evaluations on color images show that our approach outperforms JPEG with bit-
rate savings up to 42.48%. For mid- and high-range bit-rates it is also competitive
to JPEG2000 in terms of SSIM while being visually more appealing. As SMoE is
a novel approach to coding of images large potential for improvement is possible.
This includes the incorporation of more complex experts being capable of modeling
high frequency content and noise corruption as well as more advanced optimization
strategies.
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