Conference/ProceedingsIEEE Workshop on Applications of Computer Vision (WACV)
Start date05.01.2011
End date07.01.2011
AddressKona, USA
EditorEric Mortensen
Author(s)Tobias Senst, Ruben Heras Evangelio, Thomas Sikora
TitleDetecting People Carrying Objects based on an Optical Flow Motion Model
AbstractDetecting people carrying objects is a commonly formulated
problem as a first step to monitor interactions between
people and objects. Recent work relies on a precise
foreground object segmentation, which is often difficult to
achieve in video surveillance sequences due to a bad contrast
of the foreground objects with the scene background,
abrupt changing light conditions and small camera vibrations.
In order to cope with these difficulties we propose
an approach based on motion statistics. Therefore we use a Gaussian mixture motion model (GMMM) and, based on that model, we define a novel speed and direction independent motion descriptor in order to detect carried baggage as those regions not fitting in the motion description model of an average walking person. The system was tested with the
public dataset PETS2006 and a more challenging dataset including abrupt lighting changes and bad color contrast and compared with existing systems, showing very promissing results.
Key wordsmultimedia analysis, GMM, optical flow, Detecting People Carrying Objects
NoteIEEE Catalog Number: CFP11082-CDR
ISBN: 978-1-4244-9495-8